
Nicholas Carlini (Google DeepMind)
01/25/25 • 81 min
1 Listener
Nicholas Carlini from Google DeepMind offers his view of AI security, emergent LLM capabilities, and his groundbreaking model-stealing research. He reveals how LLMs can unexpectedly excel at tasks like chess and discusses the security pitfalls of LLM-generated code.
SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/
Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?
Goto https://tufalabs.ai/
***
Transcript: https://www.dropbox.com/scl/fi/lat7sfyd4k3g5k9crjpbf/CARLINI.pdf?rlkey=b7kcqbvau17uw6rksbr8ccd8v&dl=0
TOC:
1. ML Security Fundamentals
[00:00:00] 1.1 ML Model Reasoning and Security Fundamentals
[00:03:04] 1.2 ML Security Vulnerabilities and System Design
[00:08:22] 1.3 LLM Chess Capabilities and Emergent Behavior
[00:13:20] 1.4 Model Training, RLHF, and Calibration Effects
2. Model Evaluation and Research Methods
[00:19:40] 2.1 Model Reasoning and Evaluation Metrics
[00:24:37] 2.2 Security Research Philosophy and Methodology
[00:27:50] 2.3 Security Disclosure Norms and Community Differences
3. LLM Applications and Best Practices
[00:44:29] 3.1 Practical LLM Applications and Productivity Gains
[00:49:51] 3.2 Effective LLM Usage and Prompting Strategies
[00:53:03] 3.3 Security Vulnerabilities in LLM-Generated Code
4. Advanced LLM Research and Architecture
[00:59:13] 4.1 LLM Code Generation Performance and O(1) Labs Experience
[01:03:31] 4.2 Adaptation Patterns and Benchmarking Challenges
[01:10:10] 4.3 Model Stealing Research and Production LLM Architecture Extraction
REFS:
[00:01:15] Nicholas Carlini’s personal website & research profile (Google DeepMind, ML security) - https://nicholas.carlini.com/
[00:01:50] CentML AI compute platform for language model workloads - https://centml.ai/
[00:04:30] Seminal paper on neural network robustness against adversarial examples (Carlini & Wagner, 2016) - https://arxiv.org/abs/1608.04644
[00:05:20] Computer Fraud and Abuse Act (CFAA) – primary U.S. federal law on computer hacking liability - https://www.justice.gov/jm/jm-9-48000-computer-fraud
[00:08:30] Blog post: Emergent chess capabilities in GPT-3.5-turbo-instruct (Nicholas Carlini, Sept 2023) - https://nicholas.carlini.com/writing/2023/chess-llm.html
[00:16:10] Paper: “Self-Play Preference Optimization for Language Model Alignment” (Yue Wu et al., 2024) - https://arxiv.org/abs/2405.00675
[00:18:00] GPT-4 Technical Report: development, capabilities, and calibration analysis - https://arxiv.org/abs/2303.08774
[00:22:40] Historical shift from descriptive to algebraic chess notation (FIDE) - https://en.wikipedia.org/wiki/Descriptive_notation
[00:23:55] Analysis of distribution shift in ML (Hendrycks et al.) - https://arxiv.org/abs/2006.16241
[00:27:40] Nicholas Carlini’s essay “Why I Attack” (June 2024) – motivations for security research - https://nicholas.carlini.com/writing/2024/why-i-attack.html
[00:34:05] Google Project Zero’s 90-day vulnerability disclosure policy - https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-policy.html
[00:51:15] Evolution of Google search syntax & user behavior (Daniel M. Russell) - https://www.amazon.com/Joy-Search-Google-Master-Information/dp/0262042878
[01:04:05] Rust’s ownership & borrowing system for memory safety - https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
[01:10:05] Paper: “Stealing Part of a Production Language Model” (Carlini et al., March 2024) – extraction attacks on ChatGPT, PaLM-2 - https://arxiv.org/abs/2403.06634
[01:10:55] First model stealing paper (Tramèr et al., 2016) – attacking ML APIs via prediction - https://arxiv.org/abs/1609.02943
Nicholas Carlini from Google DeepMind offers his view of AI security, emergent LLM capabilities, and his groundbreaking model-stealing research. He reveals how LLMs can unexpectedly excel at tasks like chess and discusses the security pitfalls of LLM-generated code.
SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/
Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?
Goto https://tufalabs.ai/
***
Transcript: https://www.dropbox.com/scl/fi/lat7sfyd4k3g5k9crjpbf/CARLINI.pdf?rlkey=b7kcqbvau17uw6rksbr8ccd8v&dl=0
TOC:
1. ML Security Fundamentals
[00:00:00] 1.1 ML Model Reasoning and Security Fundamentals
[00:03:04] 1.2 ML Security Vulnerabilities and System Design
[00:08:22] 1.3 LLM Chess Capabilities and Emergent Behavior
[00:13:20] 1.4 Model Training, RLHF, and Calibration Effects
2. Model Evaluation and Research Methods
[00:19:40] 2.1 Model Reasoning and Evaluation Metrics
[00:24:37] 2.2 Security Research Philosophy and Methodology
[00:27:50] 2.3 Security Disclosure Norms and Community Differences
3. LLM Applications and Best Practices
[00:44:29] 3.1 Practical LLM Applications and Productivity Gains
[00:49:51] 3.2 Effective LLM Usage and Prompting Strategies
[00:53:03] 3.3 Security Vulnerabilities in LLM-Generated Code
4. Advanced LLM Research and Architecture
[00:59:13] 4.1 LLM Code Generation Performance and O(1) Labs Experience
[01:03:31] 4.2 Adaptation Patterns and Benchmarking Challenges
[01:10:10] 4.3 Model Stealing Research and Production LLM Architecture Extraction
REFS:
[00:01:15] Nicholas Carlini’s personal website & research profile (Google DeepMind, ML security) - https://nicholas.carlini.com/
[00:01:50] CentML AI compute platform for language model workloads - https://centml.ai/
[00:04:30] Seminal paper on neural network robustness against adversarial examples (Carlini & Wagner, 2016) - https://arxiv.org/abs/1608.04644
[00:05:20] Computer Fraud and Abuse Act (CFAA) – primary U.S. federal law on computer hacking liability - https://www.justice.gov/jm/jm-9-48000-computer-fraud
[00:08:30] Blog post: Emergent chess capabilities in GPT-3.5-turbo-instruct (Nicholas Carlini, Sept 2023) - https://nicholas.carlini.com/writing/2023/chess-llm.html
[00:16:10] Paper: “Self-Play Preference Optimization for Language Model Alignment” (Yue Wu et al., 2024) - https://arxiv.org/abs/2405.00675
[00:18:00] GPT-4 Technical Report: development, capabilities, and calibration analysis - https://arxiv.org/abs/2303.08774
[00:22:40] Historical shift from descriptive to algebraic chess notation (FIDE) - https://en.wikipedia.org/wiki/Descriptive_notation
[00:23:55] Analysis of distribution shift in ML (Hendrycks et al.) - https://arxiv.org/abs/2006.16241
[00:27:40] Nicholas Carlini’s essay “Why I Attack” (June 2024) – motivations for security research - https://nicholas.carlini.com/writing/2024/why-i-attack.html
[00:34:05] Google Project Zero’s 90-day vulnerability disclosure policy - https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-policy.html
[00:51:15] Evolution of Google search syntax & user behavior (Daniel M. Russell) - https://www.amazon.com/Joy-Search-Google-Master-Information/dp/0262042878
[01:04:05] Rust’s ownership & borrowing system for memory safety - https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
[01:10:05] Paper: “Stealing Part of a Production Language Model” (Carlini et al., March 2024) – extraction attacks on ChatGPT, PaLM-2 - https://arxiv.org/abs/2403.06634
[01:10:55] First model stealing paper (Tramèr et al., 2016) – attacking ML APIs via prediction - https://arxiv.org/abs/1609.02943
Previous Episode

Subbarao Kambhampati - Do o1 models search?
Join Prof. Subbarao Kambhampati and host Tim Scarfe for a deep dive into OpenAI's O1 model and the future of AI reasoning systems.
How O1 likely uses reinforcement learning similar to AlphaGo, with hidden reasoning tokens that users pay for but never see
The evolution from traditional Large Language Models to more sophisticated reasoning systems
The concept of "fractal intelligence" in AI - where models work brilliantly sometimes but fail unpredictably
Why O1's improved performance comes with substantial computational costs
The ongoing debate between single-model approaches (OpenAI) vs hybrid systems (Google)
The critical distinction between AI as an intelligence amplifier vs autonomous decision-maker
SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/
Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?
Goto https://tufalabs.ai/
***
TOC:
1. **O1 Architecture and Reasoning Foundations**
[00:00:00] 1.1 Fractal Intelligence and Reasoning Model Limitations
[00:04:28] 1.2 LLM Evolution: From Simple Prompting to Advanced Reasoning
[00:14:28] 1.3 O1's Architecture and AlphaGo-like Reasoning Approach
[00:23:18] 1.4 Empirical Evaluation of O1's Planning Capabilities
2. **Monte Carlo Methods and Model Deep-Dive**
[00:29:30] 2.1 Monte Carlo Methods and MARCO-O1 Implementation
[00:31:30] 2.2 Reasoning vs. Retrieval in LLM Systems
[00:40:40] 2.3 Fractal Intelligence Capabilities and Limitations
[00:45:59] 2.4 Mechanistic Interpretability of Model Behavior
[00:51:41] 2.5 O1 Response Patterns and Performance Analysis
3. **System Design and Real-World Applications**
[00:59:30] 3.1 Evolution from LLMs to Language Reasoning Models
[01:06:48] 3.2 Cost-Efficiency Analysis: LLMs vs O1
[01:11:28] 3.3 Autonomous vs Human-in-the-Loop Systems
[01:16:01] 3.4 Program Generation and Fine-Tuning Approaches
[01:26:08] 3.5 Hybrid Architecture Implementation Strategies
Transcript: https://www.dropbox.com/scl/fi/d0ef4ovnfxi0lknirkvft/Subbarao.pdf?rlkey=l3rp29gs4hkut7he8u04mm1df&dl=0
REFS:
[00:02:00] Monty Python (1975)
Witch trial scene: flawed logical reasoning.
https://www.youtube.com/watch?v=zrzMhU_4m-g
[00:04:00] Cade Metz (2024)
Microsoft–OpenAI partnership evolution and control dynamics.
https://www.nytimes.com/2024/10/17/technology/microsoft-openai-partnership-deal.html
[00:07:25] Kojima et al. (2022)
Zero-shot chain-of-thought prompting ('Let's think step by step').
https://arxiv.org/pdf/2205.11916
[00:12:50] DeepMind Research Team (2023)
Multi-bot game solving with external and internal planning.
https://deepmind.google/research/publications/139455/
[00:15:10] Silver et al. (2016)
AlphaGo's Monte Carlo Tree Search and Q-learning.
https://www.nature.com/articles/nature16961
[00:16:30] Kambhampati, S. et al. (2023)
Evaluates O1's planning in "Strawberry Fields" benchmarks.
https://arxiv.org/pdf/2410.02162
[00:29:30] Alibaba AIDC-AI Team (2023)
MARCO-O1: Chain-of-Thought + MCTS for improved reasoning.
https://arxiv.org/html/2411.14405
[00:31:30] Kambhampati, S. (2024)
Explores LLM "reasoning vs retrieval" debate.
https://arxiv.org/html/2403.04121v2
[00:37:35] Wei, J. et al. (2022)
Chain-of-thought prompting (introduces last-letter concatenation).
https://arxiv.org/pdf/2201.11903
[00:42:35] Barbero, F. et al. (2024)
Transformer attention and "information over-squashing."
https://arxiv.org/html/2406.04267v2
[00:46:05] Ruis, L. et al. (2023)
Influence functions to understand procedural knowledge in LLMs.
https://arxiv.org/html/2411.12580v1
(truncated - continued in shownotes/transcript doc)
Next Episode

Want to Understand Neural Networks? Think Elastic Origami! - Prof. Randall Balestriero
Professor Randall Balestriero joins us to discuss neural network geometry, spline theory, and emerging phenomena in deep learning, based on research presented at ICML. Topics include the delayed emergence of adversarial robustness in neural networks ("grokking"), geometric interpretations of neural networks via spline theory, and challenges in reconstruction learning. We also cover geometric analysis of Large Language Models (LLMs) for toxicity detection and the relationship between intrinsic dimensionality and model control in RLHF.
SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/
Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?
Goto https://tufalabs.ai/
***
Randall Balestriero
https://x.com/randall_balestr
https://randallbalestriero.github.io/
Show notes and transcript: https://www.dropbox.com/scl/fi/3lufge4upq5gy0ug75j4a/RANDALLSHOW.pdf?rlkey=nbemgpa0jhawt1e86rx7372e4&dl=0
TOC:
Introduction
00:00:00: Introduction
Neural Network Geometry and Spline Theory
00:01:41: Neural Network Geometry and Spline Theory
00:07:41: Deep Networks Always Grok
00:11:39: Grokking and Adversarial Robustness
00:16:09: Double Descent and Catastrophic Forgetting
Reconstruction Learning
00:18:49: Reconstruction Learning
00:24:15: Frequency Bias in Neural Networks
Geometric Analysis of Neural Networks
00:29:02: Geometric Analysis of Neural Networks
00:34:41: Adversarial Examples and Region Concentration
LLM Safety and Geometric Analysis
00:40:05: LLM Safety and Geometric Analysis
00:46:11: Toxicity Detection in LLMs
00:52:24: Intrinsic Dimensionality and Model Control
00:58:07: RLHF and High-Dimensional Spaces
Conclusion
01:02:13: Neural Tangent Kernel
01:08:07: Conclusion
REFS:
[00:01:35] Humayun – Deep network geometry & input space partitioning
https://arxiv.org/html/2408.04809v1
[00:03:55] Balestriero & Paris – Linking deep networks to adaptive spline operators
https://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf
[00:13:55] Song et al. – Gradient-based white-box adversarial attacks
https://arxiv.org/abs/2012.14965
[00:16:05] Humayun, Balestriero & Baraniuk – Grokking phenomenon & emergent robustness
https://arxiv.org/abs/2402.15555
[00:18:25] Humayun – Training dynamics & double descent via linear region evolution
https://arxiv.org/abs/2310.12977
[00:20:15] Balestriero – Power diagram partitions in DNN decision boundaries
https://arxiv.org/abs/1905.08443
[00:23:00] Frankle & Carbin – Lottery Ticket Hypothesis for network pruning
https://arxiv.org/abs/1803.03635
[00:24:00] Belkin et al. – Double descent phenomenon in modern ML
https://arxiv.org/abs/1812.11118
[00:25:55] Balestriero et al. – Batch normalization’s regularization effects
https://arxiv.org/pdf/2209.14778
[00:29:35] EU – EU AI Act 2024 with compute restrictions
https://www.lw.com/admin/upload/SiteAttachments/EU-AI-Act-Navigating-a-Brave-New-World.pdf
[00:39:30] Humayun, Balestriero & Baraniuk – SplineCam: Visualizing deep network geometry
https://openaccess.thecvf.com/content/CVPR2023/papers/Humayun_SplineCam_Exact_Visualization_and_Characterization_of_Deep_Network_Geometry_and_CVPR_2023_paper.pdf
[00:40:40] Carlini – Trade-offs between adversarial robustness and accuracy
https://arxiv.org/pdf/2407.20099
[00:44:55] Balestriero & LeCun – Limitations of reconstruction-based learning methods
https://openreview.net/forum?id=ez7w0Ss4g9
(truncated, see shownotes PDF)
If you like this episode you’ll love
Episode Comments
Featured in these lists
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/machine-learning-street-talk-mlst-213859/nicholas-carlini-google-deepmind-82903830"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to nicholas carlini (google deepmind) on goodpods" style="width: 225px" /> </a>
Copy