
Joscha Bach - Why Your Thoughts Aren't Yours.
10/20/24 • 112 min
1 Listener
Dr. Joscha Bach discusses advanced AI, consciousness, and cognitive modeling. He presents consciousness as a virtual property emerging from self-organizing software patterns, challenging panpsychism and materialism. Bach introduces "Cyberanima," reinterpreting animism through information processing, viewing spirits as self-organizing software agents.
He addresses limitations of current large language models and advocates for smaller, more efficient AI models capable of reasoning from first principles. Bach describes his work with Liquid AI on novel neural network architectures for improved expressiveness and efficiency.
The interview covers AI's societal implications, including regulation challenges and impact on innovation. Bach argues for balancing oversight with technological progress, warning against overly restrictive regulations.
Throughout, Bach frames consciousness, intelligence, and agency as emergent properties of complex information processing systems, proposing a computational framework for cognitive phenomena and reality.
SPONSOR MESSAGE:
DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)? MLST is sponsored by Tufa Labs: Focus: ARC, LLMs, test-time-compute, active inference, system2 reasoning, and more. Future plans: Expanding to complex environments like Warcraft 2 and Starcraft 2. Interested? Apply for an ML research position: benjamin@tufa.ai
TOC
[00:00:00] 1.1 Consciousness and Intelligence in AI Development
[00:07:44] 1.2 Agency, Intelligence, and Their Relationship to Physical Reality
[00:13:36] 1.3 Virtual Patterns and Causal Structures in Consciousness
[00:25:49] 1.4 Reinterpreting Concepts of God and Animism in Information Processing Terms
[00:32:50] 1.5 Animism and Evolution as Competition Between Software Agents
2. Self-Organizing Systems and Cognitive Models in AI
[00:37:59] 2.1 Consciousness as self-organizing software
[00:45:49] 2.2 Critique of panpsychism and alternative views on consciousness
[00:50:48] 2.3 Emergence of consciousness in complex systems
[00:52:50] 2.4 Neuronal motivation and the origins of consciousness
[00:56:47] 2.5 Coherence and Self-Organization in AI Systems
3. Advanced AI Architectures and Cognitive Processes
[00:57:50] 3.1 Second-Order Software and Complex Mental Processes
[01:01:05] 3.2 Collective Agency and Shared Values in AI
[01:05:40] 3.3 Limitations of Current AI Agents and LLMs
[01:06:40] 3.4 Liquid AI and Novel Neural Network Architectures
[01:10:06] 3.5 AI Model Efficiency and Future Directions
[01:19:00] 3.6 LLM Limitations and Internal State Representation
4. AI Regulation and Societal Impact
[01:31:23] 4.1 AI Regulation and Societal Impact
[01:49:50] 4.2 Open-Source AI and Industry Challenges
Refs in shownotes and MP3 metadata
Shownotes:
https://www.dropbox.com/scl/fi/g28dosz19bzcfs5imrvbu/JoschaInterview.pdf?rlkey=s3y18jy192ktz6ogd7qtvry3d&st=10z7q7w9&dl=0
Dr. Joscha Bach discusses advanced AI, consciousness, and cognitive modeling. He presents consciousness as a virtual property emerging from self-organizing software patterns, challenging panpsychism and materialism. Bach introduces "Cyberanima," reinterpreting animism through information processing, viewing spirits as self-organizing software agents.
He addresses limitations of current large language models and advocates for smaller, more efficient AI models capable of reasoning from first principles. Bach describes his work with Liquid AI on novel neural network architectures for improved expressiveness and efficiency.
The interview covers AI's societal implications, including regulation challenges and impact on innovation. Bach argues for balancing oversight with technological progress, warning against overly restrictive regulations.
Throughout, Bach frames consciousness, intelligence, and agency as emergent properties of complex information processing systems, proposing a computational framework for cognitive phenomena and reality.
SPONSOR MESSAGE:
DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)? MLST is sponsored by Tufa Labs: Focus: ARC, LLMs, test-time-compute, active inference, system2 reasoning, and more. Future plans: Expanding to complex environments like Warcraft 2 and Starcraft 2. Interested? Apply for an ML research position: benjamin@tufa.ai
TOC
[00:00:00] 1.1 Consciousness and Intelligence in AI Development
[00:07:44] 1.2 Agency, Intelligence, and Their Relationship to Physical Reality
[00:13:36] 1.3 Virtual Patterns and Causal Structures in Consciousness
[00:25:49] 1.4 Reinterpreting Concepts of God and Animism in Information Processing Terms
[00:32:50] 1.5 Animism and Evolution as Competition Between Software Agents
2. Self-Organizing Systems and Cognitive Models in AI
[00:37:59] 2.1 Consciousness as self-organizing software
[00:45:49] 2.2 Critique of panpsychism and alternative views on consciousness
[00:50:48] 2.3 Emergence of consciousness in complex systems
[00:52:50] 2.4 Neuronal motivation and the origins of consciousness
[00:56:47] 2.5 Coherence and Self-Organization in AI Systems
3. Advanced AI Architectures and Cognitive Processes
[00:57:50] 3.1 Second-Order Software and Complex Mental Processes
[01:01:05] 3.2 Collective Agency and Shared Values in AI
[01:05:40] 3.3 Limitations of Current AI Agents and LLMs
[01:06:40] 3.4 Liquid AI and Novel Neural Network Architectures
[01:10:06] 3.5 AI Model Efficiency and Future Directions
[01:19:00] 3.6 LLM Limitations and Internal State Representation
4. AI Regulation and Societal Impact
[01:31:23] 4.1 AI Regulation and Societal Impact
[01:49:50] 4.2 Open-Source AI and Industry Challenges
Refs in shownotes and MP3 metadata
Shownotes:
https://www.dropbox.com/scl/fi/g28dosz19bzcfs5imrvbu/JoschaInterview.pdf?rlkey=s3y18jy192ktz6ogd7qtvry3d&st=10z7q7w9&dl=0
Previous Episode

Decompiling Dreams: A New Approach to ARC? - Alessandro Palmarini
Alessandro Palmarini is a post-baccalaureate researcher at the Santa Fe Institute working under the supervision of Melanie Mitchell. He completed his undergraduate degree in Artificial Intelligence and Computer Science at the University of Edinburgh. Palmarini's current research focuses on developing AI systems that can efficiently acquire new skills from limited data, inspired by François Chollet's work on measuring intelligence. His work builds upon the DreamCoder program synthesis system, introducing a novel approach called "dream decompiling" to improve library learning in inductive program synthesis. Palmarini is particularly interested in addressing the Abstraction and Reasoning Corpus (ARC) challenge, aiming to create AI systems that can perform abstract reasoning tasks more efficiently than current approaches. His research explores the balance between computational efficiency and data efficiency in AI learning processes.
DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)? MLST is sponsored by Tufa Labs: Focus: ARC, LLMs, test-time-compute, active inference, system2 reasoning, and more. Future plans: Expanding to complex environments like Warcraft 2 and Starcraft 2. Interested? Apply for an ML research position: benjamin@tufa.ai
TOC:
1. Intelligence Measurement in AI Systems
[00:00:00] 1.1 Defining Intelligence in AI Systems
[00:02:00] 1.2 Research at Santa Fe Institute
[00:04:35] 1.3 Impact of Gaming on AI Development
[00:05:10] 1.4 Comparing AI and Human Learning Efficiency
2. Efficient Skill Acquisition in AI
[00:06:40] 2.1 Intelligence as Skill Acquisition Efficiency
[00:08:25] 2.2 Limitations of Current AI Systems in Generalization
[00:09:45] 2.3 Human vs. AI Cognitive Processes
[00:10:40] 2.4 Measuring AI Intelligence: Chollet's ARC Challenge
3. Program Synthesis and ARC Challenge
[00:12:55] 3.1 Philosophical Foundations of Program Synthesis
[00:17:14] 3.2 Introduction to Program Induction and ARC Tasks
[00:18:49] 3.3 DreamCoder: Principles and Techniques
[00:27:55] 3.4 Trade-offs in Program Synthesis Search Strategies
[00:31:52] 3.5 Neural Networks and Bayesian Program Learning
4. Advanced Program Synthesis Techniques
[00:32:30] 4.1 DreamCoder and Dream Decompiling Approach
[00:39:00] 4.2 Beta Distribution and Caching in Program Synthesis
[00:45:10] 4.3 Performance and Limitations of Dream Decompiling
[00:47:45] 4.4 Alessandro's Approach to ARC Challenge
[00:51:12] 4.5 Conclusion and Future Discussions
Refs:
Full reflist on YT VD, Show Notes and MP3 metadata
Show Notes: https://www.dropbox.com/scl/fi/x50201tgqucj5ba2q4typ/Ale.pdf?rlkey=0ubvk7p5gtyx1gpownpdadim8&st=5pniu3nq&dl=0
Next Episode

Dr. Sanjeev Namjoshi - Active Inference
Dr. Sanjeev Namjoshi, a machine learning engineer who recently submitted a book on Active Inference to MIT Press, discusses the theoretical foundations and practical applications of Active Inference, the Free Energy Principle (FEP), and Bayesian mechanics. He explains how these frameworks describe how biological and artificial systems maintain stability by minimizing uncertainty about their environment.
DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)?
MLST is sponsored by Tufa Labs:
Focus: ARC, LLMs, test-time-compute, active inference, system2 reasoning, and more.
Future plans: Expanding to complex environments like Warcraft 2 and Starcraft 2.
Interested? Apply for an ML research position: [email protected]
Namjoshi traces the evolution of these fields from early 2000s neuroscience research to current developments, highlighting how Active Inference provides a unified framework for perception and action through variational free energy minimization. He contrasts this with traditional machine learning approaches, emphasizing Active Inference's natural capacity for exploration and curiosity through epistemic value.
He sees Active Inference as being at a similar stage to deep learning in the early 2000s - poised for significant breakthroughs but requiring better tools and wider adoption. While acknowledging current computational challenges, he emphasizes Active Inference's potential advantages over reinforcement learning, particularly its principled approach to exploration and planning.
Dr. Sanjeev Namjoshi
https://snamjoshi.github.io/
TOC:
1. Theoretical Foundations: AI Agency and Sentience
[00:00:00] 1.1 Intro
[00:02:45] 1.2 Free Energy Principle and Active Inference Theory
[00:11:16] 1.3 Emergence and Self-Organization in Complex Systems
[00:19:11] 1.4 Agency and Representation in AI Systems
[00:29:59] 1.5 Bayesian Mechanics and Systems Modeling
2. Technical Framework: Active Inference and Free Energy
[00:38:37] 2.1 Generative Processes and Agent-Environment Modeling
[00:42:27] 2.2 Markov Blankets and System Boundaries
[00:44:30] 2.3 Bayesian Inference and Prior Distributions
[00:52:41] 2.4 Variational Free Energy Minimization Framework
[00:55:07] 2.5 VFE Optimization Techniques: Generalized Filtering vs DEM
3. Implementation and Optimization Methods
[00:58:25] 3.1 Information Theory and Free Energy Concepts
[01:05:25] 3.2 Surprise Minimization and Action in Active Inference
[01:15:58] 3.3 Evolution of Active Inference Models: Continuous to Discrete Approaches
[01:26:00] 3.4 Uncertainty Reduction and Control Systems in Active Inference
4. Safety and Regulatory Frameworks
[01:32:40] 4.1 Historical Evolution of Risk Management and Predictive Systems
[01:36:12] 4.2 Agency and Reality: Philosophical Perspectives on Models
[01:39:20] 4.3 Limitations of Symbolic AI and Current System Design
[01:46:40] 4.4 AI Safety Regulation and Corporate Governance
5. Socioeconomic Integration and Modeling
[01:52:55] 5.1 Economic Policy and Public Sentiment Modeling
[01:55:21] 5.2 Free Energy Principle: Libertarian vs Collectivist Perspectives
[01:58:53] 5.3 Regulation of Complex Socio-Technical Systems
[02:03:04] 5.4 Evolution and Current State of Active Inference Research
6. Future Directions and Applications
[02:14:26] 6.1 Active Inference Applications and Future Development
[02:22:58] 6.2 Cultural Learning and Active Inference
[02:29:19] 6.3 Hierarchical Relationship Between FEP, Active Inference, and Bayesian Mechanics
[02:33:22] 6.4 Historical Evolution of Free Energy Principle
[02:38:52] 6.5 Active Inference vs Traditional Machine Learning Approaches
Transcript and shownotes with refs and URLs:
https://www.dropbox.com/scl/fi/qj22a660cob1795ej0gbw/SanjeevShow.pdf?rlkey=w323r3e8zfsnve22caayzb17k&st=el1fdgfr&dl=0
If you like this episode you’ll love
Episode Comments
Featured in these lists
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/machine-learning-street-talk-mlst-213859/joscha-bach-why-your-thoughts-arent-yours-76647688"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to joscha bach - why your thoughts aren't yours. on goodpods" style="width: 225px" /> </a>
Copy