
Modeling Human Behavior with Generative Agents with Joon Sung Park - #632
06/05/23 • 46 min
2 Listeners
Today we’re joined by Joon Sung Park, a PhD Student at Stanford University. Joon shares his passion for creating AI systems that can solve human problems and his work on the recent paper Generative Agents: Interactive Simulacra of Human Behavior, which showcases generative agents that exhibit believable human behavior. We discuss using empirical methods to study these systems and the conflicting papers on whether AI models have a worldview and common sense. Joon talks about the importance of context and environment in creating believable agent behavior and shares his team's work on scaling emerging community behaviors. He also dives into the importance of a long-term memory module in agents and the use of knowledge graphs in retrieving associative information. The goal, Joon explains, is to create something that people can enjoy and empower people, solving existing problems and challenges in the traditional HCI and AI field.
Today we’re joined by Joon Sung Park, a PhD Student at Stanford University. Joon shares his passion for creating AI systems that can solve human problems and his work on the recent paper Generative Agents: Interactive Simulacra of Human Behavior, which showcases generative agents that exhibit believable human behavior. We discuss using empirical methods to study these systems and the conflicting papers on whether AI models have a worldview and common sense. Joon talks about the importance of context and environment in creating believable agent behavior and shares his team's work on scaling emerging community behaviors. He also dives into the importance of a long-term memory module in agents and the use of knowledge graphs in retrieving associative information. The goal, Joon explains, is to create something that people can enjoy and empower people, solving existing problems and challenges in the traditional HCI and AI field.
Previous Episode

Towards Improved Transfer Learning with Hugo Larochelle - #631
Today we’re joined by Hugo Larochelle, a research scientist at Google Deepmind. In our conversation with Hugo, we discuss his work on transfer learning, understanding the capabilities of deep learning models, and creating the Transactions on Machine Learning Research journal. We explore the use of large language models in NLP, prompting, and zero-shot learning. Hugo also shares insights from his research on neural knowledge mobilization for code completion and discusses the adaptive prompts used in their system.
The complete show notes for this episode can be found at twimlai.com/go/631.
Next Episode

Stable Diffusion and LLMs at the Edge with Jilei Hou - #633
Today we’re joined by Jilei Hou, a VP of Engineering at Qualcomm Technologies. In our conversation with Jilei, we focus on the emergence of generative AI, and how they've worked towards providing these models for use on edge devices. We explore how the distribution of models on devices can help amortize large models' costs while improving reliability and performance and the challenges of running machine learning workloads on devices, including model size and inference latency. Finally, Jilei we explore how these emerging technologies fit into the existing AI Model Efficiency Toolkit (AIMET) framework.
The complete show notes for this episode can be found at twimlai.com/go/633
If you like this episode you’ll love
Episode Comments
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/the-twiml-ai-podcast-formerly-this-week-in-machine-learning-and-artifi-57415/modeling-human-behavior-with-generative-agents-with-joon-sung-park-632-30484588"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to modeling human behavior with generative agents with joon sung park - #632 on goodpods" style="width: 225px" /> </a>
Copy