Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
The Real Python Podcast - Natural Language Processing and How ML Models Understand Text

Natural Language Processing and How ML Models Understand Text

The Real Python Podcast

07/29/22 • 58 min

plus icon
bookmark
Share icon

How do you process and classify text documents in Python? What are the fundamental techniques and building blocks for Natural Language Processing (NLP)? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, talks about how machine learning (ML) models understand text.

Jodie explains how ML models require data in a structured format, which involves transforming text documents into columns and rows. She covers the most straightforward approach, called binary vectorization. We discuss the bag-of-words method and the tools of stemming, lemmatization, and count vectorization.

We jump into word embedding models next. Jodie talks about WordNet, Natural Language Toolkit (NLTK), word2vec, and Gensim. Our conversation lays a foundation for starting with text classification, implementing sentiment analysis, and building projects using these tools. Jodie also shares multiple resources to help you continue exploring NLP and modeling.

Course Spotlight: Learn Text Classification With Python and Keras

In this course, you’ll learn about Python text classification with Keras, working your way from a bag-of-words model with logistic regression to more advanced methods, such as convolutional neural networks. You’ll see how you can use pretrained word embeddings, and you’ll squeeze more performance out of your model through hyperparameter optimization.

Topics:

  • 00:00:00 – Introduction
  • 00:02:47 – Exploring the topic
  • 00:06:00 – Perceived sentience of LaMDA
  • 00:10:24 – How do we get started?
  • 00:11:16 – What are classification and sentiment analysis?
  • 00:13:03 – Transforming text in rows and columns
  • 00:14:47 – Sponsor: Snyk
  • 00:15:27 – Bag-of-words approach
  • 00:19:12 – Stemming and lemmatization
  • 00:22:05 – Capturing N-grams
  • 00:25:34 – Count vectorization
  • 00:27:14 – Stop words
  • 00:28:46 – Text Frequency / Inverse Document Frequency (TFIDF) vectorization
  • 00:32:28 – Potential projects for bag-of-words techniques
  • 00:34:07 – Video Course Spotlight
  • 00:35:20 – WordNet and NLTK package
  • 00:37:27 – Word embeddings and word2vec
  • 00:45:30 – Previous training and too many dimensions
  • 00:50:07 – How to use word2vec and Gensim?
  • 00:51:26 – What types of projects for word2vec and Gensim?
  • 00:54:41 – Getting into GPT and BERT in another episode
  • 00:56:11 – How to follow Jodie’s work?
  • 00:57:36 – Thanks and goodbye

Show Links:

07/29/22 • 58 min

1 Listener

plus icon
bookmark
Share icon

Featured in these lists

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/the-real-python-podcast-186798/natural-language-processing-and-how-ml-models-understand-text-22360807"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to natural language processing and how ml models understand text on goodpods" style="width: 225px" /> </a>

Copy