
Episode 13: Kelvin Droegemeier talks about the past, present and future of weather prediction
06/07/16 • 69 min
When Kelvin Droegemeier watched the Wizard of Oz as a child, the tornado scenes scared him so much that he didn’t want to look. Today, the esteemed meteorologist watches storms for a living—with a particular interest in tornados.
From his upbringing in central Kansas—where he grew up marveling at weather and storms—to his undergraduate internship with the National Severe Storms Lab, Droegemeier was primed for a brilliant career in meteorology.
Droegemeier is currently the vice president for research at the University of Oklahoma, where he is also Regents Professor of meteorology; Weathernews Chair Emeritus; and Roger and Sherry Teigen Presidential Professor.
He is also the vice-chairman of the national science board at the National Science Foundation. In 1989, he co-founded CAPS, the Center for the Analysis and Prediction of Storms. This center pioneered storm scale numerical weather prediction with data simulation, which ushered in a whole new science of studying the weather.
Droegemeier talks with STEM-Talk Host Dawn Kernagis and co-host Tom Jones about the past, present and future of weather prediction, both in the U.S. and globally.
For more information on Droegemeier, check out his home page at the University of Oklahoma: http://kkd.ou.edu as well as his biography at the National Science Board: http://tinyurl.com/zwwvav9.
Here is also the report that came out of that, entitled “Hurricane Warning: The Critical Need for a National Hurricane Research Initiative: http://www.nsf.gov/nsb/publications/2007/hurricane/initiative.pdf
00:47: Ken Ford describes Droegemeier as a pioneer in understanding thunderstorm dynamics and predictability, computational fluid dynamics, aviation weather, modeling and predicting of extreme weather, among other areas.
1:13: Dawn says: “Kelvin has greatly shaped the scientific landscape in meteorology and storm prediction and tracking. His work has no doubt saved many lives.”
2:00: Ford was co-chairman on the National Science Board Task Force on Hurricanes, Science and Engineering in 2005-06. “Living in Pensacola and having just experienced Hurricane Ivan, and then Hurricane Katrina, I was highly motivated to work on this problem.... Around here we’ve come to fear hurricanes with Russian names like Ivan and Katrina.”
3:20: Ford reads iTunes review from “ARFO6C”: “Brilliant, just brilliant.”
4:37: “Growing up in central Kansas, I was exposed to interesting weather year-round. I remember as a child being fascinated by the power and the grandeur of the atmosphere, and how quickly the weather could change.”
7:00: Droegemeier is especially interested in spring storms and wind. “To me, the perfect day is 60 degrees, low clouds, winds at 40 mph.... [There is something] so wonderful and powerful about the wind.”.
11:06: As a child, Droegemeier was interested in science, but it wasn’t until his undergraduate work study job at the National Severe Storms Lab, where an advisor suggested graduate school, that his academic interest in weather was sparked.
12:35: He went to graduate school at the University of Illinois to work with a person who was a pioneer in using super computers to make 3D models of thunderstorms. They looked at storms’ rotation, or the pathways to understanding how tornados form.
13:50: He describes “seminal changes in the last 20-30 years in meteorology, driven by high-performance computing.”
15:04: Twenty years ago, the first national network of Doppler weather radar also emerged. This allowed sensing the directional movement of precipitation particles.
17:30: He says the data simulation models have “dramatically improved over the last two decades. We are able to predict up to 72 hours more precisely than what we were able to do twenty years ago [predicting] up to 36 hours.”
18:00: CAPS is one of the first 11 science/technology centers funded by the NSF. It was selected out of 323 applicants. The premise was the following question: ‘Could you use a computer model to predict thunderstorms in advance of their occurrence?’
21:45: Droegemeier talks about project Hub-CAPS, with American Airlines, to predict storms. They then created a private company to commercialize the forecasting technology to different types of industries worldwide, including communications and transportation. That company was called Weather Decision Technologies, Inc.
22:49: Commercial break: STEM-Talk is an educational service of the Florida Institute for Human and Machine Cognition, a not-for-profit research lab pioneering ground-breaking technologies aimed at leveraging human cognition, perception, locomotion and resilience.
26:05: Climate models are much more driven by boundary conditions t...
When Kelvin Droegemeier watched the Wizard of Oz as a child, the tornado scenes scared him so much that he didn’t want to look. Today, the esteemed meteorologist watches storms for a living—with a particular interest in tornados.
From his upbringing in central Kansas—where he grew up marveling at weather and storms—to his undergraduate internship with the National Severe Storms Lab, Droegemeier was primed for a brilliant career in meteorology.
Droegemeier is currently the vice president for research at the University of Oklahoma, where he is also Regents Professor of meteorology; Weathernews Chair Emeritus; and Roger and Sherry Teigen Presidential Professor.
He is also the vice-chairman of the national science board at the National Science Foundation. In 1989, he co-founded CAPS, the Center for the Analysis and Prediction of Storms. This center pioneered storm scale numerical weather prediction with data simulation, which ushered in a whole new science of studying the weather.
Droegemeier talks with STEM-Talk Host Dawn Kernagis and co-host Tom Jones about the past, present and future of weather prediction, both in the U.S. and globally.
For more information on Droegemeier, check out his home page at the University of Oklahoma: http://kkd.ou.edu as well as his biography at the National Science Board: http://tinyurl.com/zwwvav9.
Here is also the report that came out of that, entitled “Hurricane Warning: The Critical Need for a National Hurricane Research Initiative: http://www.nsf.gov/nsb/publications/2007/hurricane/initiative.pdf
00:47: Ken Ford describes Droegemeier as a pioneer in understanding thunderstorm dynamics and predictability, computational fluid dynamics, aviation weather, modeling and predicting of extreme weather, among other areas.
1:13: Dawn says: “Kelvin has greatly shaped the scientific landscape in meteorology and storm prediction and tracking. His work has no doubt saved many lives.”
2:00: Ford was co-chairman on the National Science Board Task Force on Hurricanes, Science and Engineering in 2005-06. “Living in Pensacola and having just experienced Hurricane Ivan, and then Hurricane Katrina, I was highly motivated to work on this problem.... Around here we’ve come to fear hurricanes with Russian names like Ivan and Katrina.”
3:20: Ford reads iTunes review from “ARFO6C”: “Brilliant, just brilliant.”
4:37: “Growing up in central Kansas, I was exposed to interesting weather year-round. I remember as a child being fascinated by the power and the grandeur of the atmosphere, and how quickly the weather could change.”
7:00: Droegemeier is especially interested in spring storms and wind. “To me, the perfect day is 60 degrees, low clouds, winds at 40 mph.... [There is something] so wonderful and powerful about the wind.”.
11:06: As a child, Droegemeier was interested in science, but it wasn’t until his undergraduate work study job at the National Severe Storms Lab, where an advisor suggested graduate school, that his academic interest in weather was sparked.
12:35: He went to graduate school at the University of Illinois to work with a person who was a pioneer in using super computers to make 3D models of thunderstorms. They looked at storms’ rotation, or the pathways to understanding how tornados form.
13:50: He describes “seminal changes in the last 20-30 years in meteorology, driven by high-performance computing.”
15:04: Twenty years ago, the first national network of Doppler weather radar also emerged. This allowed sensing the directional movement of precipitation particles.
17:30: He says the data simulation models have “dramatically improved over the last two decades. We are able to predict up to 72 hours more precisely than what we were able to do twenty years ago [predicting] up to 36 hours.”
18:00: CAPS is one of the first 11 science/technology centers funded by the NSF. It was selected out of 323 applicants. The premise was the following question: ‘Could you use a computer model to predict thunderstorms in advance of their occurrence?’
21:45: Droegemeier talks about project Hub-CAPS, with American Airlines, to predict storms. They then created a private company to commercialize the forecasting technology to different types of industries worldwide, including communications and transportation. That company was called Weather Decision Technologies, Inc.
22:49: Commercial break: STEM-Talk is an educational service of the Florida Institute for Human and Machine Cognition, a not-for-profit research lab pioneering ground-breaking technologies aimed at leveraging human cognition, perception, locomotion and resilience.
26:05: Climate models are much more driven by boundary conditions t...
Previous Episode

Episode 12: Dale Bredesen discusses the metabolic factors underlying Alzheimer’s Disease
‘Would you rather remember: the latest episode of Friends, or how to speak?’ asks Dr. Dale Bredesen, a nationally-recognized expert on neurodegenerative diseases.
We don’t have to think about the answer to that question. In fact, we are biologically programmed to preserve speech and forget the television show. But physiological changes occur as we age, which begin to affect our ability to speak, walk, and remember names and faces.
The most extreme and recognizable form of this is Alzheimer’s Disease, which Dr. Bredesen states is the third leading cause of death in the United States. He has come up with a novel therapeutic approach that first investigates the underlying metabolic changes leading to the disease.
Bredesen’s approach, called MEND (metabolic enhancement for neurodegeneration) helped a 65-year-old woman recover her functional memory, after her first physician had written her off as bound to the same demise of her mother, who suffered and died from Alzheimer’s Disease.
Bredesen shares these and other insights in this episode of STEM-Talk, where he and host Dawn Kernagis engage in a rich and thought-provoking conversation about the future of treating neurodegenerative and other diseases.
Bredesen has been on the faculty at UCSF, UCSD. Currently, he divides his time between UCLA and the Buck Institute for Research on Aging, of which he is founder and CEO: http://buckinstitute.org/bredesenLab
For a close-up look at Dr. Bredesen’s work, check out his papers in the Journal Aging: http://www.impactaging.com/papers/v6/n9/full/100690.html ; http://www.impactaging.com/papers/v7/n8/full/100801.html.
As well as is his paper on ApoE4 in the Journal Neuroscience: http://www.ncbi.nlm.nih.gov/pubmed/26791201
00:55: Dawn introduces Dr. Bredesen as a nationally-recognized expert on neurodegenerative diseases such as Alzheimer’s Disease.
1:17: Ford explains that Bredesen’s research has found that AD stems from an imbalance in nerve cell signaling. In the normal brain, specific signals foster memory making, while balancing signals support memory breaking. In AD, the balance of these opposing signals is disturbed. Nerve connections are suppressed, and memories are lost.
1:47: Dawn adds that Bredesen’s findings, which support the view that AD is a metabolically driven, neurodegenerative process, are contrary to the popular belief that the disease is derived from an accumulation of plaques in the brain.
2:50: Ford reads Mark Riff’s 5-star iTunes review: “Fantastic line-up. And what a wealth of cutting edge information. Just having access to these incredible minds is unbelievable. Can’t wait to see what’s coming up.”
3:15: Dawn describes Bredesen’s background: college at Caltech, medical school at Duke University, Chief resident in neurology at UCSF, where he was also a post-doc in Nobel Laureate Stanley Prusiner’s laboratory.
4:02: Bredesen describes how he got into research, first as an undergrad at CalTech. He went to medical school to understand how diseases affect the brain, and specifically alter learning and memory.
4:47: “The whole molecular neuroscience revolution of the 1980s and 1990s has really offered us the novel tools to understand these diseases,” adding that until now, treating and reversing neurodegenerative diseases like Huntington’s and Lou Gehrig’s has been the greatest area of biomedical failure. “This is exciting time where we are starting to develop therapies.”
5:52: The development of large data sets and systems biology is having a major impact on illnesses. People would formerly spend their whole career on one mechanism, but now we’re realizing disease is multi-factorial.
7:05: AD is a network imbalance that is very analogous to osteoporosis. Signals contribute to osteoblastic activity, which is laying down the bones. Other signals contribute to osteoclastic activity, or taking up the bones. For most of our lives, these signals are “beautifully balanced,” which becomes imbalanced as we age. In AD, similarly, synaptoblastic activity is imbalanced with synaptoclastic activity, which destroys synapses.
9:53: Bredesen talks about the “dozens and dozens of signals that alter the synaptic balance” in AD, including: ApoE4, estradiol, Free T3, Free T4, testosterone, exercise, sleep, melatonin.
10:50: AD for most people is not a disease. It is a programmatic downsizing of the synaptic network. Much like apoptosis, or synaptosis. “Imagine you have a company of 10,000 employees that is essentially headed for the red. APP (beta-amyloid precursor protein) is essentially like your CFO who ...
Next Episode

Episode 14: Dominic D’Agostino discusses the physiological benefits of nutritional ketosis
Dominic D’Agostino looks like a bodybuilder. But that doesn’t mean that he eats a diet typical for that sport; on the contrary, the research scientist—and amateur athlete—can go an entire day without eating and says his performance—both in the lab and in the gym—improves because of it.
D’Agostino is perhaps rare in the world of science in that he practices what he preaches. As associate professor in the department of molecular pharmacology and physiology at the University of South Florida, and a visiting research scientist at IHMC, D’Agostino develops and tests metabolic therapies for a range of diseases and conditions for which the ketogenic diet is the cornerstone.
The low-carb, moderate-protein, high-fat ketogenic diet is what he also follows for health and greater mental clarity.
The ketogenic diet for decades has been used, albeit perhaps sparingly in the clinic, to treat epileptic seizures. D’Agostino is working on the development of exogenous ketones in the form of ketone esters for cancer and neurological disorders as well.
For more information on D’Agostino and his research, visit: http://health.usf.edu/medicine/mpp/faculty/24854/Dominic-DAgostino.aspx or http://www.ketonutrition.org.
His IHMC bio is at http://www.ihmc.us/groups/ddagostino/; and his IHMC talk “Metabolic Therapies: Therapeutic Implications and Practical Application”: https://www.youtube.com/watch?v=gONeCxtyH18
D’Agostino is a long-time friend and colleague to STEM-Talk Host Dawn Kernagis, and the two engage in a rich, cutting-edge conversation with knowledgeable input from IHMC Director Ken Ford in this episode.
00:37: Dawn introduces D’Agostino, who goes by ‘Dom,’ and Ken Ford as co-host.
2:14: Ford reads an iTunes five-star review of STEM-Talk from “A Sweet 81,” which is entitled BAM: “Amazing podcast. It’s like candy for the brain. That is, if candy was good for your brain. So it’s like ketones for your brain.”
2:48: Dawn describes Dom’s research: He develops and tests metabolic therapies for CNS oxygen toxicity, epilepsy, neurodegenerative diseases, brain and metastatic cancer. Main research focus past five years: understanding why the ketogenic diet and ketone esters are anticonvulsant and protective to the brain.
4:15: Dom says his interest in science started in high school: He was a football player and wanted to improve his athletic performance. His honors biology teacher got on him to study hard. “I saw biology and science as a way to understand my own biology and physiology to maximize my performance.”
5:23: During his Ph.D. program in neuroscience and physiology at the Robert Wood Johnson Medical School, his mentor urged him to be an independent thinker. He describes being “thrown into the fire” when he was asked to apply basic science research to medical situations. He specifically looked at how the brain responded to hypoxia.
7:12: He did a post-doc with Jay Dean and also became a recreational diver. “Dean was the only person studying cellular and molecular mechanisms of extreme environments.”
8:36: Of Dean, he said, “The tools he created are filling gaps in the understanding of dive physiology.”
10:19: Nutritional ketosis is important for the metabolic management of diseases, especially seizures.
10:45: Nutritional ketosis works similarly to fasting: you liberate free fatty acids from the adipose tissue and break down stored glycogen levels in the liver. Once the glycogen levels reach a certain level, you start accelerating the oxidation of fatty acids in liver.
11:11: Dom explains how ketosis works: the heart (and muscles) prefers fatty acids over glucose, but they don’t readily cross the blood-brain barrier. So brain energy metabolism will transition from glucose to a fuel source called ketone bodies, which is a by-product of accelerated fat oxidation in the liver. These represent water soluble fat molecules that readily cross the BBB; they help preserve, maintain and enhance brain energy metabolism in the face of starvation.
11:54: The ketogenic diet has a macronutrient ratio that mimics the physiological state of fasting: high fat, moderate protein, and very low carbohydrate.
12:22: Nutritional ketosis has been used for over 90 years to manage drug-resistant epilepsy.
13:25: The ketogenic diet helps control seizures because it’s effective at achieving brain energy homeostasis.
14:28: The Office of Naval Research has played the key and primary role in sponsoring Dom’s research program to develop and test exogenous k...
If you like this episode you’ll love
Episode Comments
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/stem-talk-65457/episode-13-kelvin-droegemeier-talks-about-the-past-present-and-future-3454119"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to episode 13: kelvin droegemeier talks about the past, present and future of weather prediction on goodpods" style="width: 225px" /> </a>
Copy