
BI 133 Ken Paller: Lucid Dreaming, Memory, and Sleep
04/15/22 • 89 min
Support the show to get full episodes, full archive, and join the Discord community.
Check out my free video series about what's missing in AI and Neuroscience
Ken discusses the recent work in his lab that allows communication with subjects while they experience lucid dreams. This new paradigm opens many avenues to study the neuroscience and psychology of consciousness, sleep, dreams, memory, and learning, and to improve and optimize sleep for cognition. Ken and his team are developing a Lucid Dreaming App which is freely available via his lab. We also discuss much of his work on memory and learning in general and specifically related to sleep, like reactivating specific memories during sleep to improve learning.
- Ken's Cognitive Neuroscience Laboratory.
- Twitter: @kap101.
- The Lucid Dreaming App.
- Related papers
0:00 - Intro 2:48 - Background and types of memory 14:44 -Consciousness and memory 23:32 - Phases and sleep and wakefulness 28:19 - Sleep, memory, and learning 33:50 - Targeted memory reactivation 48:34 - Problem solving during sleep 51:50 - 2-way communication with lucid dreamers 1:01:43 - Confounds to the paradigm 1:04:50 - Limitations and future studies 1:09:35 - Lucid dreaming app 1:13:47 - How sleep can inform AI 1:20:18 - Advice for students
Support the show to get full episodes, full archive, and join the Discord community.
Check out my free video series about what's missing in AI and Neuroscience
Ken discusses the recent work in his lab that allows communication with subjects while they experience lucid dreams. This new paradigm opens many avenues to study the neuroscience and psychology of consciousness, sleep, dreams, memory, and learning, and to improve and optimize sleep for cognition. Ken and his team are developing a Lucid Dreaming App which is freely available via his lab. We also discuss much of his work on memory and learning in general and specifically related to sleep, like reactivating specific memories during sleep to improve learning.
- Ken's Cognitive Neuroscience Laboratory.
- Twitter: @kap101.
- The Lucid Dreaming App.
- Related papers
0:00 - Intro 2:48 - Background and types of memory 14:44 -Consciousness and memory 23:32 - Phases and sleep and wakefulness 28:19 - Sleep, memory, and learning 33:50 - Targeted memory reactivation 48:34 - Problem solving during sleep 51:50 - 2-way communication with lucid dreamers 1:01:43 - Confounds to the paradigm 1:04:50 - Limitations and future studies 1:09:35 - Lucid dreaming app 1:13:47 - How sleep can inform AI 1:20:18 - Advice for students
Previous Episode

BI 132 Ila Fiete: A Grid Scaffold for Memory
Announcement:
I'm releasing my Neuro-AI course April 10-13, after which it will be closed for some time. Learn more here.
Support the show to get full episodes, full archive, and join the Discord community.
Ila discusses her theoretical neuroscience work suggesting how our memories are formed within the cognitive maps we use to navigate the world and navigate our thoughts. The main idea is that grid cell networks in the entorhinal cortex internally generate a structured scaffold, which gets sent to the hippocampus. Neurons in the hippocampus, like the well-known place cells, receive that scaffolding and also receive external signals from the neocortex- signals about what's happening in the world and in our thoughts. Thus, the place cells act to "pin" what's happening in our neocortex to the scaffold, forming a memory. We also discuss her background as a physicist and her approach as a "neurophysicist", and a review she's publishing all about the many brain areas and cognitive functions being explained as attractor landscapes within a dynamical systems framework.
- The Fiete Lab.
- Related papers
0:00 - Intro 3:36 - "Neurophysicist" 9:30 - Bottom-up vs. top-down 15:57 - Tool scavenging 18:21 - Cognitive maps and hippocampus 22:40 - Hopfield networks 27:56 - Internal scaffold 38:42 - Place cells 43:44 - Grid cells 54:22 - Grid cells encoding place cells 59:39 - Scaffold model: stacked hopfield networks 1:05:39 - Attractor landscapes 1:09:22 - Landscapes across scales 1:12:27 - Dimensionality of landscapes
Next Episode

BI 134 Mandyam Srinivasan: Bee Flight and Cognition
Support the show to get full episodes, full archive, and join the Discord community.
Check out my free video series about what's missing in AI and Neuroscience
Srini is Emeritus Professor at Queensland Brain Institute in Australia. In this episode, he shares his wide range of behavioral experiments elucidating the principles of flight and navigation in insects. We discuss how bees use optic flow signals to determine their speed, distance, proximity to objects, and to gracefully land. These abilities are largely governed via control systems, balancing incoming perceptual signals with internal reference signals. We also talk about a few of the aerial robotics projects his research has inspired, many of the other cognitive skills bees can learn, the possibility of their feeling pain , and the nature of their possible subjective conscious experience.
- Srini's Website.
- Related papers
0:00 - Intro 3:34 - Background 8:20 - Bee experiments 14:30 - Bee flight and navigation 28:05 - Landing 33:06 - Umwelt and perception 37:26 - Bee-inspired aerial robotics 49:10 - Motion camouflage 51:52 - Cognition in bees 1:03:10 - Small vs. big brains 1:06:42 - Pain in bees 1:12:50 - Subjective experience 1:15:25 - Deep learning 1:23:00 - Path forward
If you like this episode you’ll love
Episode Comments
Featured in these lists
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/brain-inspired-206251/bi-133-ken-paller-lucid-dreaming-memory-and-sleep-21441952"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to bi 133 ken paller: lucid dreaming, memory, and sleep on goodpods" style="width: 225px" /> </a>
Copy