Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
Aerospace Engineering Podcast - Podcast Ep. #15 – Nick Sills on Contra-Rotating Electric Propulsion

Podcast Ep. #15 – Nick Sills on Contra-Rotating Electric Propulsion

07/24/18 • 46 min

1 Listener

Aerospace Engineering Podcast
On this episode I am speaking to Nick Sills who is the founder of Contra Electric Propulsion Ltd. Nick’s engineering background is in developing underwater propulsion systems for the offshore oil and gas industry. He has designed products ranging from a hydraulically powered excavator for pipeline route trenching, to the world’s biggest deep water excavator. He received a Queen's Award for Technological Achievement for the "Jet Prop" tool, a 5 m diameter propeller that is powered by ejecting high pressure seawater from its propeller blades. Nick founded his most recent company, Contra Electric Propulsion, to develop a contra-rotating propeller system for the light aircraft market. Contra-rotating propeller systems typically use two propellers mounted in series that spin in opposite directions. The fact that props are spinning in both directions alleviates many of the attitude and control problems when flying aircraft. Contra-rotation has rarely found its way onto modern, gas-powered aircraft because the variable-pitch requirement for efficient operation has made the system overly expensive, complex and maintenance intensive. By changing the power source from fossil fuels to electrons, however, many components of the modern aircraft can be designed differently. With new electric motors it is now possible to build a much simpler, fixed-pitch, contra-rotating propulsion system for light aircraft. As an aerobatic pilot, Nick immediately realised the massive advantages of instantaneous torque delivery and reversible thrust that electric motors can provide. That's why he believes that the next big advance in light aircraft propulsion will be a battery-powered, twin motor, contra-rotating system with fixed-pitch propellers. Since this has now become technically feasible, he is privately building one to prove it. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Contra Electric Propulsion Why electric? Contra Electric's system components Benefits of the system Background on Nick and his flying and offshore days Contra-rotation in action: videos Forwards propulsion Forwards/Backwards propulsion Full capability: one/two rotor, forward/backward
plus icon
bookmark
On this episode I am speaking to Nick Sills who is the founder of Contra Electric Propulsion Ltd. Nick’s engineering background is in developing underwater propulsion systems for the offshore oil and gas industry. He has designed products ranging from a hydraulically powered excavator for pipeline route trenching, to the world’s biggest deep water excavator. He received a Queen's Award for Technological Achievement for the "Jet Prop" tool, a 5 m diameter propeller that is powered by ejecting high pressure seawater from its propeller blades. Nick founded his most recent company, Contra Electric Propulsion, to develop a contra-rotating propeller system for the light aircraft market. Contra-rotating propeller systems typically use two propellers mounted in series that spin in opposite directions. The fact that props are spinning in both directions alleviates many of the attitude and control problems when flying aircraft. Contra-rotation has rarely found its way onto modern, gas-powered aircraft because the variable-pitch requirement for efficient operation has made the system overly expensive, complex and maintenance intensive. By changing the power source from fossil fuels to electrons, however, many components of the modern aircraft can be designed differently. With new electric motors it is now possible to build a much simpler, fixed-pitch, contra-rotating propulsion system for light aircraft. As an aerobatic pilot, Nick immediately realised the massive advantages of instantaneous torque delivery and reversible thrust that electric motors can provide. That's why he believes that the next big advance in light aircraft propulsion will be a battery-powered, twin motor, contra-rotating system with fixed-pitch propellers. Since this has now become technically feasible, he is privately building one to prove it. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Contra Electric Propulsion Why electric? Contra Electric's system components Benefits of the system Background on Nick and his flying and offshore days Contra-rotation in action: videos Forwards propulsion Forwards/Backwards propulsion Full capability: one/two rotor, forward/backward

Previous Episode

undefined - Podcast Ep. #14 – Dufour Aerospace Co-Founder Thomas Pfammatter on the aEro2 VTOL Electric Aircraft

Podcast Ep. #14 – Dufour Aerospace Co-Founder Thomas Pfammatter on the aEro2 VTOL Electric Aircraft

On this episode I am speaking to Thomas Pfammatter, who is the co-founder of the Swiss electric aircraft startup Dufour Aerospace. Dufour is currently designing an electric aircraft with vertical take-off and landing (VTOL) capabilities for the urban and rural transport market. The promise of their current aircraft, the aEro 2, is that with VTOL capabilities it can take-off and land pretty much anywhere, which can considerably reduce travel times, especially to places that are difficult to reach by car or train. There is a long-standing compromise in aviation between taking-off vertically, and being able to travel fast horizontally. Dufour Aerospace believes that with electric propulsion it is possible to combine these two worlds. To achieve this, Dufour are using a tilt-wing design fitted with two propellers. The wing and attached propellers can pivot around a hinge between the horizontal and vertical planes, and thereby provide exceptional lift, stability and control characteristics even in slow flight. Dufour have proven their electrical aviation ambitions with the aEro1 aerobatic aircraft and are currently in the process of developing the tilt-wing aEro 2 airplane. In this episode you will learn about many of the details behind Dufour’s technology such as: the tilt-wing concept and the tail fan used for pitch control the aerodynamic importance of the vortex ring state the future of regional travel and how Dufour hopes to influence this space If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Dufour Aerospace: The vision The technology of the aEro 2 The aEro 1 aircraft aEro 2 flying simulation aEro 2 press release What does it feel like to fly an electric aircraft? The vortex ring state

Next Episode

undefined - Podcast Ep. #16 – Max Haot and Launcher’s Ten-year Journey to Deliver Small Satellites to Orbit

Podcast Ep. #16 – Max Haot and Launcher’s Ten-year Journey to Deliver Small Satellites to Orbit

On this episode I am speaking to Max Haot, who is the founder of Launcher, a rocket startup based out of Brooklyn, NY. Launcher was founded in early 2017 and is on a ten-year journey to deliver small satellites to orbit. More specifically, Launcher plans to deliver payloads of up to 300 kg into low-earth orbit cheaper than anyone else in the growing small launcher market; a market specialising on small satellites that will deliver GPS, internet services and earth imaging in the near future. The most difficult part of launching satellites into orbit is building a robust and reliable rocket engine. On top of that, the physics of the rocket equation dictate very stringent constraints on the mass of the rocket and payload. To launch a satellite into low-earth orbit, a typical liquid-oxygen/kerosene rocket is around 95% propellant on the launchpad. So any fuel savings from a more efficient rocket engine can go towards increasing the payload. Launcher has spent the last year working on their proof-of-concept engine, the E-1, and are now in the process of spending the next three years developing the 40x larger E-2 engine. Key to Launcher’s rocket engine is 3D printing and a staged combustion cycle. 3D printing allows for a reduction in parts, faster development times, and easier manufacturing of complex geometries such as integrated cooling channels, which all help to reduce costs. In a staged combustion cycle, a favourite of Soviet rocket engineers, propellant flows through two combustion chambers, a preburner and a main combustion chamber. The pressure produced by igniting a small amount of propellant in the preburner can be used to power the turbo pumps that force the remaining propellant into the main combustion chamber. The addition of the preburner leads to better fuel efficiency, but comes at the cost of greater engineering complexity. One of the things I love about Launcher is that they face this daunting engineering challenge with the utmost humility, documenting many of their failures and successes online for everyone to see. In this way, anyone can get a glimpse of what it means to build a rocket company from scratch. In this episode of the Aerospace Engineering Podcast you will learn: how Max got into the space industry the engineering details behind many aspects of the E-1 engine the advantages of 3D printing and stage combustion and Launcher’s current schedule for developing the full-size E-2 engine If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.

Episode Comments

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/aerospace-engineering-podcast-180387/podcast-ep-15-nick-sills-on-contra-rotating-electric-propulsion-15709392"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to podcast ep. #15 – nick sills on contra-rotating electric propulsion on goodpods" style="width: 225px" /> </a>

Copy