
Quantum Computing
06/30/21 • 52 min
In 1935, the famous physicist Erwin Schrödinger was debating with his friend Albert Einstein about the nature of a fundamental concept in quantum mechanics – a field that was, at the time, still very new. To illustrate his point, Schrödinger proposed a thought experiment wherein a (rather unfortunate) cat sealed in a box is both alive and dead simultaneously – up until the moment someone opens the box. Decades later, that abstract paradox is still very much alive, and enabling the development of a new generation of computers.
These quantum computers use bits (called qubits) that, unlike the binary bits in today’s electronics, can simultaneously exist in many states between on and off. And although the word gets overused in science, this emerging technology really is revolutionary. A fully developed quantum computer is predicted to be able to perform calculations that would be impossible for a traditional supercomputer, even with thousands of years of processing time.
In this episode, our experts chat about the current state of quantum computers and explain why the mind-bending theories of quantum make coming to work a lot of fun.
Featuring:
Irfan Siddiqi is a professor at UC Berkeley, where he leads the Quantum Nanoelectronics Laboratory, a collaborative group dedicated to developing new and improved superconducting qubits. He is also a faculty scientist at Berkeley Lab, where he leads the Advanced Quantum Testbed and the Quantum Systems Accelerator – a DOE National Quantum Information Science Research Center.
Zahra Pedramrazi is a project scientist at the Advanced Quantum Testbed. During her physics undergraduate, she took a quantum class with Irfan, and became hooked on the field. She is currently focused on the fabrication of superconducting qubits, working to refine their design in order to overcome the limitations of current qubits.
"Thus, the task is, not so much to see what no one has yet seen; but to think what nobody has yet thought, about that which everybody sees." ― Erwin Schrödinger
“How wonderful that we have met with a paradox. Now we have some hope of making progress.” ― Niels Bohr
In 1935, the famous physicist Erwin Schrödinger was debating with his friend Albert Einstein about the nature of a fundamental concept in quantum mechanics – a field that was, at the time, still very new. To illustrate his point, Schrödinger proposed a thought experiment wherein a (rather unfortunate) cat sealed in a box is both alive and dead simultaneously – up until the moment someone opens the box. Decades later, that abstract paradox is still very much alive, and enabling the development of a new generation of computers.
These quantum computers use bits (called qubits) that, unlike the binary bits in today’s electronics, can simultaneously exist in many states between on and off. And although the word gets overused in science, this emerging technology really is revolutionary. A fully developed quantum computer is predicted to be able to perform calculations that would be impossible for a traditional supercomputer, even with thousands of years of processing time.
In this episode, our experts chat about the current state of quantum computers and explain why the mind-bending theories of quantum make coming to work a lot of fun.
Featuring:
Irfan Siddiqi is a professor at UC Berkeley, where he leads the Quantum Nanoelectronics Laboratory, a collaborative group dedicated to developing new and improved superconducting qubits. He is also a faculty scientist at Berkeley Lab, where he leads the Advanced Quantum Testbed and the Quantum Systems Accelerator – a DOE National Quantum Information Science Research Center.
Zahra Pedramrazi is a project scientist at the Advanced Quantum Testbed. During her physics undergraduate, she took a quantum class with Irfan, and became hooked on the field. She is currently focused on the fabrication of superconducting qubits, working to refine their design in order to overcome the limitations of current qubits.
"Thus, the task is, not so much to see what no one has yet seen; but to think what nobody has yet thought, about that which everybody sees." ― Erwin Schrödinger
“How wonderful that we have met with a paradox. Now we have some hope of making progress.” ― Niels Bohr
Previous Episode

Biomanufacturing: Making Stuff with Microbes
What do advanced medicines, renewable fuels, vegan burgers, smart fabrics, petroleum-free plastics, and cruelty-free cosmetics have in common? They're all produced with specially engineered microbes! Yep, microbes.
In episode three, we explore the fields of science making this 21st century industrial revolution possible: synthetic biology and biomanufacturing.
Our guests discuss how humans first developed the tools and knowledge to harness the natural capabilities of bacteria and yeast, and chat about where this rapidly accelerating industry could go next. (Hello painless vaccines and eco-friendly air travel!)
Featuring:
Jay Keasling, CEO of the Joint BioEnergy Institute (JBEI), senior scientist at Berkeley Lab, and professor of both Chemical & Biomolecular Engineering and Bioengineering at UC Berkeley. Jay is also the Philomathia Chair in Alternative Energy at UC Berkeley, and cofounder of the biotech company Amyris.
and
Deepika Awasthi, a project scientist in Berkeley Lab's Biological Systems and Engineering Division and an affiliate at JBEI.
Produced and hosted by Aliyah Kovner
Next Episode

Energy storage: Save your electrons for a rainy day
Have you ever wondered how electricity is available all the time? That’s the seemingly magical science of energy storage. In this episode, we speak to a policy leader and a researcher about the history of piggy-banking power to spend it later, and how this field is evolving to help us prevent extreme weather-related blackouts, adopt more renewable energy, and build bigger, better, more environmentally responsible batteries.
Featuring:
Noël Bakhtian, director of Berkeley Lab's Energy Storage Center. Noel formerly served as director of the Center for Advanced Energy Studies at Idaho National Laboratory and as a senior policy advisor for the White House Office of Science and Technology Policy. Before her shift into policy and leadership, she was an engineer at NASA Ames Research Center working on Mars landing projects.
Mike Gerhardt, research scientist at SINTEF Industry in Norway helping develop new battery and fuel cell technologies using experimentation and computer modeling. Before moving to SINTEF, he was a postdoc in the Energy Conversion Group at Berkeley Lab.
*Special thanks to The Apples in Stereo for use of their song*
This episode was hosted, produced, and edited by Aliyah Kovner. Art by Jenny Nuss.
Audio samples from Halleck, Joao_Janz, and philtre.
A Day in the Half-Life - Quantum Computing
Transcript
Aliyah (00:08):
You're listening to A Day in the Half Life. I'm Aliyah Kovner at Berkeley lab, and in this episode, we're going to hear from two quantum computing researchers. Right now, quantum computing systems are a super hot topic because of the immense potential they have to usher in a whole new wor
If you like this episode you’ll love
Episode Comments
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/a-day-in-the-half-life-174053/quantum-computing-15088897"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to quantum computing on goodpods" style="width: 225px" /> </a>
Copy