Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
The New Quantum Era - Trapped Ions and Quantum VCs with Chiara Decaroli

Trapped Ions and Quantum VCs with Chiara Decaroli

12/15/23 • 54 min

The New Quantum Era

Summary

In this episode, Sebastian and Kevin are joined by Chiara Decaroli, a quantum physicist and venture capitalist. Chiara shares her unique journey into the field of quantum, starting from a small village in Italy to earning her PhD in quantum physics. She explains the history of ion trapping and how it led to the development of quantum computing. Chiara also discusses the strengths and weaknesses of trapped ion systems and the challenges of investing in early-stage quantum startups. In this conversation, Chiara Decaroli discusses the challenges of assessing quantum technologies and the deep expertise required in the field. She also shares her experience in gaining familiarity with different quantum modalities and the importance of multidisciplinarity in the quantum field. Chiara highlights the skills needed in the quantum industry, emphasizing the need for deep knowledge in physics and specialized segments. She also discusses the importance of cross-disciplinary education and the potential impact of quantum technologies.

Takeaways

Chiara's path to quantum started from a small village in Italy and led her to earn a PhD in quantum physics at ETH Zurich.
Ion trapping is a key technology in quantum computing, and it has a rich history dating back to the 1930s.
Trapped ions can be manipulated using laser beams to perform single and two-qubit gates.
Trapped ion systems have the advantage of perfect qubits but face challenges in scalability and speed of operations.
Investing in quantum startups requires a deep understanding of the field and the ability to navigate the early-stage landscape. Assessing quantum technologies requires deep expertise and a scientific background.
Gaining familiarity with different quantum modalities requires extensive reading and talking to experts in the field.
The quantum field is highly multidisciplinary, requiring expertise in physics, engineering, software development, and specialized domains.
Cross-disciplinary education is important in the quantum field to foster innovation and solve complex problems.
The potential impact of quantum technologies is immense, but it is challenging to predict the exact applications and advancements.

Chapters

00:00 Introduction and Background
01:01 Chiara's Path to Quantum
08:13 History of Ion Trapping
19:47 Implementing Gates with Trapped Ions
27:24 Strengths and Weaknesses of Trapped Ion Systems
35:49 Venture Capital in Quantum
37:55 The Challenges of Assessing Quantum Technologies
39:12 Gaining Familiarity with Different Quantum Modalities
40:27 The Multidisciplinary Nature of Quantum Technologies
41:22 Skills Needed in the Quantum Field
42:58 The Importance of Cross-Disciplinary Education
44:27 The Potential Impact of Quantum Technologies

plus icon
bookmark

Summary

In this episode, Sebastian and Kevin are joined by Chiara Decaroli, a quantum physicist and venture capitalist. Chiara shares her unique journey into the field of quantum, starting from a small village in Italy to earning her PhD in quantum physics. She explains the history of ion trapping and how it led to the development of quantum computing. Chiara also discusses the strengths and weaknesses of trapped ion systems and the challenges of investing in early-stage quantum startups. In this conversation, Chiara Decaroli discusses the challenges of assessing quantum technologies and the deep expertise required in the field. She also shares her experience in gaining familiarity with different quantum modalities and the importance of multidisciplinarity in the quantum field. Chiara highlights the skills needed in the quantum industry, emphasizing the need for deep knowledge in physics and specialized segments. She also discusses the importance of cross-disciplinary education and the potential impact of quantum technologies.

Takeaways

Chiara's path to quantum started from a small village in Italy and led her to earn a PhD in quantum physics at ETH Zurich.
Ion trapping is a key technology in quantum computing, and it has a rich history dating back to the 1930s.
Trapped ions can be manipulated using laser beams to perform single and two-qubit gates.
Trapped ion systems have the advantage of perfect qubits but face challenges in scalability and speed of operations.
Investing in quantum startups requires a deep understanding of the field and the ability to navigate the early-stage landscape. Assessing quantum technologies requires deep expertise and a scientific background.
Gaining familiarity with different quantum modalities requires extensive reading and talking to experts in the field.
The quantum field is highly multidisciplinary, requiring expertise in physics, engineering, software development, and specialized domains.
Cross-disciplinary education is important in the quantum field to foster innovation and solve complex problems.
The potential impact of quantum technologies is immense, but it is challenging to predict the exact applications and advancements.

Chapters

00:00 Introduction and Background
01:01 Chiara's Path to Quantum
08:13 History of Ion Trapping
19:47 Implementing Gates with Trapped Ions
27:24 Strengths and Weaknesses of Trapped Ion Systems
35:49 Venture Capital in Quantum
37:55 The Challenges of Assessing Quantum Technologies
39:12 Gaining Familiarity with Different Quantum Modalities
40:27 The Multidisciplinary Nature of Quantum Technologies
41:22 Skills Needed in the Quantum Field
42:58 The Importance of Cross-Disciplinary Education
44:27 The Potential Impact of Quantum Technologies

Previous Episode

undefined - Adiabatic and Counterdiabatic Quantum Computing with Dr. Ieva Čepaitė

Adiabatic and Counterdiabatic Quantum Computing with Dr. Ieva Čepaitė

In this episode of The New Quantum Era, Kevin Rowney and Sebastian Hassinger are joined by Dr. Ieva Čepaitė to delve into the nuanced world of quantum physics and computation. Dr. Čepaitė discusses her journey into quantum computing and her work on counterdiabatic methods used to optimize the control of many body quantum states. She provides an overview of the landscape of new algorithms available within the field. She points out the importance of understanding the hardware to implement a quantum algorithm effectively. The focus then shifts to a discussion on adiabatic and counterdiabatic systems, providing a detailed understanding of both methods. The conversation concludes with a speculative take on future breakthroughs that could emerge with respect to quantum algorithms.

00:31 Introduction and Overview of the Interview
02:43 Dr. Čepaitė's Journey into Quantum Computing
05:23 Dr. Čepaitė's Diverse Experience in Quantum Computing
09:37 The Challenges and Opportunities in Quantum Computing
11:50 Understanding Adiabatic and Counterdiabatic Systems
15:15 The Potential of Counterdiabatic Techniques in Quantum Computing
25:49 The Future of Quantum Algorithms
32:55 The Role of Quantum Machine Learning
35:48 Closing Remarks and Reflections

Next Episode

undefined - Dawning of the Era of Logical Qubits with Dr Vladan Vuletic

Dawning of the Era of Logical Qubits with Dr Vladan Vuletic

Kevin and Sebastian are joined by Dr. Vladan Vuletic, the Lester Wolfe Professor of Physics at the Center for Ultracold Atoms and Research in the Department of Physics at the Massachusetts Institute of Technology

At the end of 2023, the quantum computing community was startled and amazed by the results from a bombshell paper published in Nature on December 6th, titled Logical quantum processor based on reconfigurable atom arrays in which Dr. Vuletic's group collaborated with Dr Mikhail Lukin's group at Harvard to create 48 logical qubits from an array of 280 atoms. Scott Aaronson does a good job of breaking down the results on his blog, but the upshot is that this is the largest number of logical qubits created, and a very large leap ahead for the field.

00:00 Introduction and Background
01:07 Path to Quantum Computing
03:30 Rydberg Atoms and Quantum Gates
08:56 Transversal Gates and Logical Qubits
15:12 Implementation and Commercial Potential
23:59 Future Outlook and Quantum Simulations
30:51 Scaling and Applications
32:22 Improving Quantum Gate Fidelity
33:19 Advancing Field of View Systems
33:48 Closing the Feedback Loop on Error Correction
35:29 Quantum Error Correction as a Remarkable Breakthrough
36:13 Cross-Fertilization of Quantum Error Correction Ideas

Episode Comments

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/the-new-quantum-era-246959/trapped-ions-and-quantum-vcs-with-chiara-decaroli-39497050"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to trapped ions and quantum vcs with chiara decaroli on goodpods" style="width: 225px" /> </a>

Copy