
The Metabolic Classroom with Dr. Ben Bikman
Insulin IQ
Hosted on Acast. See acast.com/privacy for more information.

1 Listener
All episodes
Best episodes
Seasons
Top 10 The Metabolic Classroom with Dr. Ben Bikman Episodes
Goodpods has curated a list of the 10 best The Metabolic Classroom with Dr. Ben Bikman episodes, ranked by the number of listens and likes each episode have garnered from our listeners. If you are listening to The Metabolic Classroom with Dr. Ben Bikman for the first time, there's no better place to start than with one of these standout episodes. If you are a fan of the show, vote for your favorite The Metabolic Classroom with Dr. Ben Bikman episode by adding your comments to the episode page.

Why A1C Isn't Enough: Insights from Dr. Ben Bikman with Dr. Ken Berry
The Metabolic Classroom with Dr. Ben Bikman
08/26/24 • 27 min
In this episode of The Metabolic Classroom, Dr. Ken Berry and Dr. Ben Bikman discussed the critical role of endogenous insulin, the limitations of focusing solely on glucose levels, and the implications of common markers like A1C and uric acid in understanding metabolic health.
Dr. Berry began by highlighting how many primary care physicians misunderstand the function of beta cells in type 2 diabetes, often believing that these cells “burn out” and stop producing insulin. Dr. Bikman clarified that in true type 2 diabetes, beta cells do not fail entirely; instead, insulin production often remains high or slightly decreases, which is still significantly higher than normal.
The problem lies in the body’s insulin resistance, not a lack of insulin production. Dr. Bikman emphasized the importance of measuring fasting insulin levels early in a patient's metabolic health journey, noting that levels above 6 microunits/mL can indicate potential problems.
The conversation then shifted to the A1C test, a common marker used to assess blood glucose levels over time. Dr. Berry and Dr. Bikman discussed the limitations of A1C, particularly how it can be falsely elevated or decreased based on the lifespan of red blood cells. Longer-lived red blood cells can cause a falsely high A1C, even if glucose levels are normal, while short-lived red blood cells can lead to a falsely low A1C in the presence of hyperglycemia. Dr. Bikman suggested that while A1C has value, it should not be the sole marker for assessing metabolic health. He also pointed out that A1C does not account for the glycation caused by other sugars like fructose, which can lead to significant damage not reflected in A1C results.
Dr. Berry raised concerns about the carnivore community, where some individuals see their A1C levels rise despite a healthy diet. Dr. Bikman explained that this could be due to longer-lived red blood cells resulting from a nutrient-rich diet. He recommended the fructosamine test as a better indicator of glucose glycation in these cases. The discussion also touched on the lack of tests for fructose and galactose glycation, leaving healthcare providers blind to the potential damage caused by high fructose intake, especially from fruit juices.
The classroom discussion concluded with an exchange about uric acid, particularly its relationship with fructose metabolism. Dr. Bikman shared insights from his research showing that uric acid, which is produced during fructose metabolism, can contribute to insulin resistance and inflammation. However, he also noted that ketones, produced during a ketogenic diet, can inhibit the inflammation caused by uric acid, providing a potential explanation for why individuals on ketogenic diets may experience improved metabolic health despite elevated uric acid levels.
Learn more about Dr. Ken Berry: https://www.drberry.com/about
#InsulinResistance #Type2Diabetes #DrBenBikman #DrKenBerry #A1CTest #FastingInsulin #UricAcid #CarnivoreDiet #Fructose #MetabolicHealth #KetogenicDiet #Inflammation #BetaCells #Endocrinology #BloodGlucose #ProperHumanDiet #HealthLecture #MetabolicClassroom #BiomedicalScience #InsulinIQ
My favorite meal-replacement shake: https://gethlth.com (discount: BEN10)
My favorite electrolytes (and more): https://redmond.life (discount: BEN15)
My favorite allulose source: https://rxsugar.com (discount: BEN20)
Hosted on Acast. See acast.com/privacy for more information.

1 Listener

The Metabolic Consequences of Poor Sleep
The Metabolic Classroom with Dr. Ben Bikman
12/31/24 • 30 min
Learn more about becoming an Insider on our website: https://www.benbikman.com
Dr. Benjamin Bikman delves into the profound relationship between sleep and metabolic health, emphasizing the critical role sleep plays in maintaining insulin sensitivity and overall metabolic function.
Ben explains that deep sleep is a restorative phase during which the body repairs cells, regulates hormones, and improves insulin sensitivity. Poor sleep, however, disrupts these vital processes, leading to hormonal imbalances that elevate cortisol levels and reduce melatonin production.
Elevated cortisol, a stress hormone, promotes gluconeogenesis and insulin resistance, while insufficient melatonin—a hormone essential for regulating sleep—negatively impacts insulin sensitivity and glucose metabolism. This disruption creates a cycle of metabolic dysfunction, increasing the risk of conditions like type 2 diabetes and obesity.
Dr. Bikman highlights actionable strategies to improve both sleep and metabolic health. He stresses the importance of avoiding high-glycemic meals before bed, minimizing exposure to blue light from screens, and maintaining consistent sleep schedules.
He also discusses how ketones, especially in athletes after intense exercise, have been shown to improve sleep efficiency and REM sleep duration.
For individuals struggling with sleep, Dr. Bikman explores the potential benefits of melatonin supplementation and exogenous ketones, underscoring the need for personalized approaches. By addressing evening habits and understanding the hormonal interplay between sleep and metabolism, individuals can take meaningful steps to enhance both sleep quality and metabolic health.
This episode of The Metabolic Classroom provides valuable insights into how optimizing sleep can significantly improve overall well-being.
Timestamps:
(00:45) – Introduction to Sleep and Metabolic Health
(01:22) – Why Sleep is Essential for Insulin Sensitivity
(04:20) – How Cortisol Disrupts Sleep and Metabolism
(08:10) – The Unexpected Role of Melatonin in Metabolism
(19:35) – How Late-Night Eating and Blue Light Harm Sleep
(23:40) – Can Exogenous Ketones Improve Sleep Quality?
(28:20) – Practical Tips for Better Sleep and Metabolic Health
Hosted on Acast. See acast.com/privacy for more information.

The Unexpected Link Between Salt Regulating Hormones and Metabolic Health
The Metabolic Classroom with Dr. Ben Bikman
12/19/24 • 35 min
We sincerely apologize! During the livestream recording, we experienced some technical difficulties between 07:15 to 08:50. Thanks for your patience and understanding.
Learn more about becoming an Insider on our website: https://www.benbikman.com
During The Metabolic Classroom lecture this week, Dr. Bikman dives into the intricate relationship between salt- and water-regulating hormones and metabolic health.
Starting with a discussion of the renin-angiotensin-aldosterone system (RAAS), he explains how hormones like angiotensin II, aldosterone, and antidiuretic hormone (ADH) are not only critical for regulating blood pressure but also significantly impact insulin sensitivity and fat cell dynamics. Angiotensin II promotes insulin resistance by increasing ceramide production, which blocks insulin signaling, while also enlarging fat cells and inhibiting their breakdown. Similarly, aldosterone exacerbates insulin resistance by enhancing ceramide levels and promotes both the growth and multiplication of fat cells. ADH complements these effects, particularly by inhibiting fat breakdown through its action on specific receptors.
Ben emphasizes the counterintuitive finding that salt restriction, often prescribed to manage hypertension, can worsen insulin resistance, particularly in individuals with metabolic vulnerabilities. Studies highlight that reducing salt intake leads to increased fasting insulin levels, impaired glucose metabolism, and unfavorable lipid changes, such as reduced HDL cholesterol. Additionally, he warns that dehydration, much like salt restriction, activates these same hormonal pathways, compounding their metabolic effects.
Dr. Bikman concludes with a reminder that interventions aimed at improving blood pressure should consider their broader metabolic implications, particularly for individuals predisposed to insulin resistance.
Show Notes/References:
For complete show notes and references referred to in this episode, we invite you to become a Ben Bikman Insider subscriber. As a subscriber, you’ll enjoy real-time, livestream Metabolic Classroom access which includes live Q&A with Ben, ad-free Metabolic Classroom Podcast episodes, show notes and references, Ben’s Research Reviews Podcast, and a searchable archive that includes all Metabolic Classroom episodes and Research Reviews. Learn more about becoming an Insider on our website: https://www.benbikman.com
Timestamps: (approximate)
(01:13) Overview of Salt- and Water-Regulating Hormones
(02:22) How Angiotensin II Influences Blood Pressure and Insulin Resistance
(06:37) The Metabolic Effects of Angiotensin II on Fat Cells
(11:22) Aldosterone’s Role in Insulin Resistance and Fat Cell Growth
(15:57) Metabolic Impacts of Antidiuretic Hormone (ADH)
(29:02) The Counterintuitive Effects of Salt Restriction on Metabolic Health
(33:13) The Role of Dehydration in Activating Metabolic Hormones
(34:51) Conclusion: How Blood Pressure Hormones Influence Metabolic Health
#MetabolicHealth #InsulinResistance #Hypertension #SaltAndHealth #BloodPressure #HormonesAndHealth #DrBenBikman #MetabolicSyndrome #LowCarbLife #Type2Diabetes #KetoLife #HealthyLifestyle #NutritionScience #MetabolismMatters #HealthEducation #FatCellBiology #InsulinSensitivity #SaltIntake #Dehydration #HealthTips
Hosted on Acast. See acast.com/privacy for more information.

The Metabolism of Male Infertility
The Metabolic Classroom with Dr. Ben Bikman
04/18/24 • 34 min
Dr. Ben Bikman discusses the intricate relationship between metabolic health and male infertility.
While metabolic health is often associated with conditions like obesity and diabetes, Dr. Bikman emphasizes its relevance to less obvious issues like male infertility. He notes that while the processes of reproduction differ between the sexes, they share a common metabolic core.
Ben highlights that infertility affects approximately 15% of couples trying to conceive, with men contributing to around 30% of cases. He explains the role of hormones like follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in male reproductive function, detailing their influence on spermatogenesis and testosterone production.
The classroom lecture delves into how poor metabolic health, particularly insulin resistance, can disrupt testosterone production and lead to issues like erectile dysfunction and reduced sperm quality. Insulin resistance affects testosterone synthesis directly in the testes and indirectly by promoting aromatization, the conversion of testosterone into estrogen, leading to a vicious cycle of reduced testosterone and increased insulin resistance.
Dr. Bikman discusses various strategies to improve metabolic health and potentially alleviate male infertility, including dietary changes, medication such as insulin-sensitizing drugs like metformin, and exercise, particularly resistance training. He stresses the importance of addressing underlying metabolic issues to improve reproductive outcomes and suggests that prioritizing metabolic health before attempting reproduction is crucial.
In conclusion, Dr. Bikman underscores the interconnectedness of metabolic health and reproductive function, advocating for a holistic approach to addressing male infertility that focuses on improving insulin sensitivity and overall metabolic well-being.
00:00 - Introduction to metabolic health's relevance in male infertility
01:18 - Infertility statistics and men's contribution to the issue
02:37 - Hormonal role in male reproductive function: FSH and LH
03:53 - FSH and LH stimulation of spermatogenesis and testosterone
05:57 - Testosterone's functions in male fertility and maturation
08:04 - Nitric oxide's role in erectile function and its insulin connection
11:28 - How insulin resistance impacts testosterone production and erectile dysfunction
14:02 - Insulin resistance's effects on testosterone synthesis and aromatization
18:55 - Strategies to improve metabolic health and alleviate male infertility
26:38 - Conclusion: The link between metabolic health and reproductive function
#MaleInfertility #FertilityHealth #Metabolism #ReproductiveHealth #InfertilityAwareness #MenHealth #SpermHealth #HormonalHealth #NutritionForFertility #HealthTalk #MaleHealth #FertilityJourney #HealthyLiving #HolisticHealth
Hosted on Acast. See acast.com/privacy for more information.

Strategies for Fat Burning with Dr. Ben Bikman
The Metabolic Classroom with Dr. Ben Bikman
03/28/24 • 33 min
In this lecture from the Metabolic Classroom, Dr. Ben Bikman, a biomedical scientist specializing in metabolism, delves into various strategies for fat loss.
He begins by highlighting the importance of understanding fat tissue dynamics, focusing particularly on hormones, drugs, and sex-specific effects. The main topic for the lecture is strategies for fat loss, which Bikman divides into three categories: drugs, surgical interventions, and lifestyle changes.
Bikman briefly revisits the topic of drugs for fat loss, emphasizing GLP-1 agonists and their mechanism of action in reducing cravings. He discusses their efficacy but also mentions potential side effects such as sexual dysfunction and the risk of regaining fat mass after discontinuation.
Moving on to surgical interventions, Bikman provides detailed explanations of bariatric surgeries including Roux-en-Y gastric bypass, laparoscopic adjustable gastric banding, laparoscopic sleeve gastrectomy, and biliopancreatic diversion with duodenal switch. Ben discusses their mechanisms, benefits, drawbacks, and potential complications, shedding light on the complexity and consequences of these procedures.
Next, Bikman explores liposuction, highlighting its cosmetic nature and its limited impact on metabolic health. He explains how liposuction removes fat cells from subcutaneous fat depots, which may lead to a rebound effect as remaining fat cells compensate by hypertrophying.
The lecture’s focus then shifts to lifestyle changes, particularly exercise and nutrition. Bikman emphasizes that exercise should be pursued for health and strength rather than solely for weight loss. He stresses the importance of nutrition in fat loss, advocating for strategies that prioritize lowering insulin levels through carbohydrate control, prioritizing protein, and not fearing dietary fat.
Bikman underscores the significance of managing insulin levels as a primary step in fat loss, followed by potential calorie control through structured fasting if necessary. He discusses the metabolic advantages of lowering insulin, including increased metabolic rate and ketone production.
Finally, Dr. Bikman briefly mentions alternate methods like sauna and cold plunge therapy, suggesting their potential contribution to fat loss, although empirical evidence is lacking. He concludes by emphasizing the importance of shrinking fat cells through proper lifestyle strategies, promoting overall metabolic health.
Throughout the lecture, Bikman’s teaching style is engaging and informative, providing insights into the complex interplay of hormones, physiology, and behavior in fat metabolism and weight management.
Learn more at: https://www.insuliniq.com
Don't forget to like, share, and subscribe for more insightful lectures from Professor Ben Bikman in the Metabolic Classroom series!
Hosted on Acast. See acast.com/privacy for more information.

The Skinny on Fat: Sex and Fat Metabolism
The Metabolic Classroom with Dr. Ben Bikman
03/21/24 • 32 min
In this episode of the metabolic classroom, Dr. Ben Bikman takes the helm to explore the multifaceted role of fat tissue as an endocrine organ. He begins by challenging the conventional view of fat tissue as merely a storage depot for energy, emphasizing its crucial role in hormone production and regulation.
Dr. Bikman introduces the concept of endocrine organs and highlights the often overlooked status of fat tissue as one such organ. He discusses how fat tissue releases hormones into the bloodstream, exerting significant metabolic effects throughout the body.
The lecture delves into sex-specific differences in fat distribution and hormone production, with a focus on the influence of estrogen on fat storage and hormone levels in women. Dr. Bikman further explores the impact of menopause on fat tissue and hormonal changes, shedding light on how shifts in hormone production affect metabolism and fertility.
Leptin, the first discovered fat-derived hormone, is dissected in detail by Dr. Bikman, who elucidates its role in appetite regulation, metabolic processes, and fertility. He discusses how excess fat can lead to leptin resistance, compromising its effectiveness in metabolic regulation.
Other hormones such as adiponectin, estrogen, TNF alpha, plasminogen activator inhibitor 1 (PAI-1), and T3 are also explored for their metabolic effects and their association with fat cell size.
The lecture concludes with a focus on brown adipose tissue and its production of T3, highlighting its role in regulating metabolic rate, particularly in response to stimuli like cold exposure.
In summary, Dr. Bikman provides a comprehensive overview of the endocrine functions of adipose tissue, emphasizing the intricate relationship between fat cells and hormone regulation, with implications for metabolism, inflammation, and overall health.
00:01 - Introduction to Adipose Tissue as an Endocrine Organ
01:07 - Sex-Specific Differences in Fat Distribution
03:21 - Impact of Menopause on Fat Tissue and Hormone Production
05:45 - Endocrine Effects of Fat Distribution
07:58 - Role of Fat Tissue in Aromatization and Estrogen Production
10:13 - Impact of Fat Cell Size on Hormone Production
12:24 - Detailed Exploration of Leptin
14:45 - Examination of Adiponectin and its Metabolic Effects
18:17 - TNF Alpha and its Impact on Inflammation and Insulin Resistance
21:05 - Plasminogen Activator Inhibitor 1 (PAI-1) and its Implications for Clotting
22:16 - Brown Adipose Tissue and its Production of T3
24:30 - Conclusion and Summary
#insulinresistance #metabolicsyndrome #metabolichealth #type2diabetes #type1diabetes #weightloss #intermittentfasting #intermittantfasting #fasting #lowcarb
Learn more at: https://www.insuliniq.com
Hosted on Acast. See acast.com/privacy for more information.

Energy Toxicity and Insulin Resistance
The Metabolic Classroom with Dr. Ben Bikman
06/06/24 • 36 min
In this episode of The Metabolic Classroom, Dr. Bikman, a biomedical scientist and professor of cell biology, delves into the concept of energy toxicity.
He begins by explaining that energy toxicity attempts to explain why certain cells, particularly those capable of storing energy like muscle and liver cells, become insulin resistant. The primary idea is that when these cells accumulate excess energy, particularly in the form of triglycerides, they become resistant to further energy storage by becoming insulin resistant. He clarifies that this is closely related to lipotoxicity, where the stored fat itself, rather than glycogen, is seen as the main culprit for this condition.
Ben notes that while the notion of energy toxicity encompasses both glucose and fats, triglycerides, a type of fat stored in muscle and liver cells, play a significant role. However, studies, such as one on endurance athletes, have shown that muscle triglycerides alone do not cause insulin resistance, leading to the concept of the “athlete’s paradox.”
Dr. Bikman further explores the biochemical pathways involved in insulin resistance, emphasizing that specific lipid intermediates, particularly diacylglycerols (DAGs) and ceramides, are more relevant than triglycerides in causing insulin resistance. DAGs disrupt the insulin signaling pathway by activating protein kinase C, while ceramides inhibit insulin signaling and affect mitochondrial function, increasing reactive oxygen species and contributing to insulin resistance.
Ben challenges the notion of energy toxicity as a primary cause of insulin resistance, advocating instead for a focus on lipotoxicity and its mediators. He concludes that chronically elevated insulin levels, rather than the stored energy itself, are the main drivers of insulin resistance, suggesting that the term “insulin toxicity” might be more appropriate. This understanding is crucial for addressing what he identifies as the most common health issue worldwide—insulin resistance.
01:16: Defining Energy Toxicity
02:58: Lipotoxicity vs. Energy Toxicity
06:20: Ectopic Fat Storage
08:20: Triglycerides in Muscle Cells
13:57: The Athlete's Paradox
17:11: DAGs and Insulin Resistance
19:26: Ceramides and Mitochondrial Function
29:21: Insulin and Lipolysis
33:59: High Insulin and Insulin Resistance
Studies Referenced:
A phenomenon known as the “athlete’s paradox”:
https://academic.oup.com/jcem/article/86/12/5755/2849249
https://www.sciencedirect.com/science/article/abs/pii/S0165614717300962?via=ihub
https://www.sciencedirect.com/science/article/pii/S0021925820859080?via=ihub
https://www.jci.org/articles/view/43378
#MetabolicHealth #InsulinResistance #EnergyToxicity #Lipotoxicity #BenBikman #CellBiology #Triglycerides #DiabetesResearch #FatMetabolism #EctopicFat #KetogenicDiet #InsulinSensitivity #MitochondrialFunction #MetabolicClassroom #HealthScience #BiomedicalResearch #Endocrinology #Metabolism #HealthEducation #Type2Diabetes
Hosted on Acast. See acast.com/privacy for more information.

Alcohol and Insulin Resistance
The Metabolic Classroom with Dr. Ben Bikman
06/20/24 • 27 min
In this episode of The Metabolic Classroom Dr. Ben Bikman focused on the effects of alcohol on insulin resistance, emphasizing how ethanol, the main form of alcohol, influences the brain and metabolism. He highlighted that alcohol is primarily metabolized by the liver and can cause insulin resistance through both direct and indirect mechanisms. Dr. Bikman detailed the molecular pathways by which ethanol inhibits insulin signaling, notably by disrupting the insulin receptor substrate (IRS1) and increasing oxidative stress, which impairs insulin's ability to regulate glucose.
Ben provided evidence from studies demonstrating ethanol's impact on insulin resistance at the cellular and whole-body levels. Research showed that ethanol consumption leads to higher insulin responses during glucose tolerance tests, indicating a reduced sensitivity to insulin. This phenomenon was observed in healthy humans who experienced a significant increase in insulin levels after consuming alcohol, suggesting a profound metabolic shift due to ethanol's presence.
The lecture also covered indirect effects of alcohol on insulin resistance. Many alcoholic beverages contain high amounts of sugar, exacerbating insulin and glucose responses. Alcohol disrupts sleep quality, leading to poor metabolic outcomes and increased cortisol levels, which further contribute to insulin resistance. Additionally, ethanol competes with other metabolic substrates, leading to fat accumulation in the liver and elevated glucose and fat levels in the body.
Dr. Bikman concluded by discussing the inflammatory response triggered by alcohol, particularly through the concept of a "leaky gut," where ethanol causes gaps in intestinal cells, allowing harmful substances like lipopolysaccharides (LPS) to enter the bloodstream and induce inflammation. This inflammation promotes ceramide production, further contributing to insulin resistance. Overall, Dr. Bikman emphasized the significant role of alcohol in metabolic health issues and encouraged mindfulness regarding alcohol consumption to mitigate these risks.
01:10 - Alcohol and Metabolism
02:18 - Direct Effects of Ethanol
03:26 - Insulin Receptor Disruption
06:38 - Whole-Body Impact
08:37 - Ceramides and Insulin Resistance
11:34 - Indirect Effects: Sugar
13:31 - Indirect Effects: Sleep
18:37 - Indirect Effects: Substrate Competition
23:34 - Inflammation and Leaky Gut
Studies Referenced:
(see notes on YouTube video: https://youtu.be/1aMuPTre1IU )
Hosted on Acast. See acast.com/privacy for more information.

What is GLP-1, What Does It Do, and Where Does It Come From?
The Metabolic Classroom with Dr. Ben Bikman
02/14/24 • 33 min
In today's episode of The Metabolic Classroom, Dr. Ben Bikman delves into the fascinating topic of GLP-1, a hormone of significant interest in metabolic research. Dr. Bikman sets the stage by expanding the discussion beyond GLP-1 to include other incretions, defining them as a class of hormones produced by the small intestine. These hormones play crucial roles in nutrient metabolism, satiety, and hunger regulation.
The discovery of incretions stemmed from observations following gastric bypass surgeries, where elevated levels of these hormones were found in the bloodstream, leading to improvements in diabetes. Dr. Bikman highlights GLP-1's well-known effect on insulin secretion and glucagon suppression, which contribute to its ability to rapidly correct high glucose levels and improve diabetes. However, he notes the ongoing debate regarding GLP-1's direct insulin secretagogue effect in humans, contrasting findings from cell culture and animal models with recent human studies.
Moving beyond GLP-1, Dr. Bikman discusses other incretions like GIP, PYY, and cholecystokinin, outlining their roles in glucose regulation, appetite control, and digestion. He explores the pharmacological applications of GLP-1 agonists in managing diabetes and obesity, detailing various drugs and their mechanisms of action. Furthermore, he touches upon natural methods to enhance GLP-1 secretion, including dietary factors like protein, fat, and sugars. The session concludes with insights into the live Q&A session, emphasizing the dynamic interaction between science and audience participation in The Metabolic Classroom.
Learn more at: https://www.insuliniq.com
Hosted on Acast. See acast.com/privacy for more information.

The China Study Revisited - Science vs. Storytelling
The Metabolic Classroom with Dr. Ben Bikman
06/02/25 • 20 min
📢 Dr. Bikman’s Coaching Site, Insulin IQ: https://insuliniq.com
and/or
📢 Become an Insider, Ben’s website: https://www.benbikman.com
In this episode of The Metabolic Classroom, Dr. Bikman critically examines the claims made in The China Study, a popular book advocating for a plant-based diet based on correlational data from the China-Cornell-Oxford Project. While the book suggests that animal protein causes cancer and chronic disease, Ben emphasizes that correlation is not causation and points out that many of the study’s conclusions are misleading or unsupported by the raw data.
For example, some regions with higher meat consumption actually had lower cancer mortality, and wheat flour consumption showed a stronger correlation with heart disease than meat intake.
He also scrutinizes the rat experiments used to bolster the study’s conclusions. These studies involved pairing a powerful carcinogen with isolated casein (a dairy protein), resulting in cancer growth. However, Ben highlights that whole dairy, including fats like CLA and butyrate, may actually protect against cancer. He explains how isolating one protein and ignoring other nutrients misrepresents the effects of real, whole food consumption.
Ben then shifts to mechanisms and dissects the mTOR pathway, often cited in arguments against animal protein. He presents data showing that insulin—not leucine—is a much more potent and sustained activator of mTOR. This undermines the idea that animal protein is uniquely harmful and suggests that refined carbohydrates, which spike insulin, are more concerning in cancer development.
In conclusion, Dr. Bikman encourages viewers not to fear animal protein, especially when consumed with its natural fats in whole foods. He urges people to scrutinize bold dietary claims and recognize that refined carbs, not protein, are more consistently implicated in disease. While The China Study may have popularized plant-based eating, its scientific foundation is far less solid than many assume.
Show Notes/References:
For complete show notes and references, we invite you to become an Insider subscriber. You’ll enjoy real-time, livestream Metabolic Classroom access which includes live Q&A with Ben after the lecture, ad-free podcast episodes, show notes and references, online Office Hours access, Ben’s Research Review Podcast, and a searchable archive that includes all Metabolic Classroom episodes and Research Reviews. Learn more: https://www.benbikman.com
Hosted on Acast. See acast.com/privacy for more information.
Show more best episodes

Show more best episodes
FAQ
How many episodes does The Metabolic Classroom with Dr. Ben Bikman have?
The Metabolic Classroom with Dr. Ben Bikman currently has 104 episodes available.
What topics does The Metabolic Classroom with Dr. Ben Bikman cover?
The podcast is about Life Sciences, Health & Fitness, Nutrition, Podcasts, Diabetes, Science, Fasting, Diet, Health and Low Carb.
What is the most popular episode on The Metabolic Classroom with Dr. Ben Bikman?
The episode title 'Why A1C Isn't Enough: Insights from Dr. Ben Bikman with Dr. Ken Berry' is the most popular.
What is the average episode length on The Metabolic Classroom with Dr. Ben Bikman?
The average episode length on The Metabolic Classroom with Dr. Ben Bikman is 32 minutes.
How often are episodes of The Metabolic Classroom with Dr. Ben Bikman released?
Episodes of The Metabolic Classroom with Dr. Ben Bikman are typically released every 6 days, 12 hours.
When was the first episode of The Metabolic Classroom with Dr. Ben Bikman?
The first episode of The Metabolic Classroom with Dr. Ben Bikman was released on Feb 16, 2021.
Show more FAQ

Show more FAQ