Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
The History of Computing - The Evolution of Fonts on Computers

The Evolution of Fonts on Computers

04/10/23 • 20 min

The History of Computing

Gutenburg shipped the first working printing press around 1450 and typeface was born. Before then most books were hand written, often in blackletter calligraphy. And they were expensive. The next few decades saw Nicolas Jensen develop the Roman typeface, Aldus Manutius and Francesco Griffo create the first italic typeface. This represented a period where people were experimenting with making type that would save space.

The 1700s saw the start of a focus on readability. William Caslon created the Old Style typeface in 1734. John Baskerville developed Transitional typefaces in 1757. And Firmin Didot and Giambattista Bodoni created two typefaces that would become the modern family of Serif. Then slab Serif, which we now call Antique, came in 1815 ushering in an era of experimenting with using type for larger formats, suitable for advertisements in various printed materials. These were necessary as more presses were printing more books and made possible by new levels of precision in the metal-casting.

People started experimenting with various forms of typewriters in the mid-1860s and by the 1920s we got Frederic Goudy, the first real full-time type designer. Before him, it was part of a job. After him, it was a job. And we still use some of the typefaces he crafted, like Copperplate Gothic. And we saw an explosion of new fonts like Times New Roman in 1931.

At the time, most typewriters used typefaces on the end of a metal shaft. Hit a kit, the shaft hammers onto a strip of ink and leaves a letter on the page. Kerning, or the space between characters, and letter placement were often there to reduce the chance that those metal hammers jammed. And replacing a font would have meant replacing tons of precision parts. Then came the IBM Selectric typewriter in 1961. Here we saw precision parts that put all those letters on a ball. Hit a key, the ball rotates and presses the ink onto the paper. And the ball could be replaced. A single document could now have multiple fonts without a ton of work.

Xerox exploded that same year with the Xerox 914, one of the most successful products of all time. Now, we could type amazing documents with multiple fonts in the same document quickly - and photocopy them. And some of the numbers on those fancy documents were being spat out by those fancy computers, with their tubes. But as computers became transistorized heading into the 60s, it was only a matter of time before we put fonts on computer screens.

Here, we initially used bitmaps to render letters onto a screen. By bitmap we mean that a series, or an array of pixels on a screen is a map of bits and where each should be displayed on a screen. We used to call these raster fonts, but the drawback was that to make characters bigger, we needed a whole new map of bits. To go to a bigger screen, we probably needed a whole new map of bits. As people thought about things like bold, underline, italics, guess what - also a new file. But through the 50s, transistor counts weren’t nearly high enough to do something different than bitmaps as they rendered very quickly and you know, displays weren’t very high quality so who could tell the difference anyways.

Whirlwind was the first computer to project real-time graphics on the screen and the characters were simple blocky letters. But as the resolution of screens and the speed of interactivity increased, so did what was possible with drawing glyphs on screens.

Rudolf Hell was a German, experimenting with using cathode ray tubes to project a CRT image onto paper that was photosensitive and thus print using CRT. He designed a simple font called Digital Grotesk, in 1968. It looked good on the CRT and the paper. And so that font would not only be used to digitize typesetting, loosely based on Neuzeit Book.

And we quickly realized bitmaps weren’t efficient to draw fonts to screen and by 1974 moved to outline, or vector, fonts. Here a Bézier curve was drawn onto the screen using an algorithm that created the character, or glyph using an outline and then filling in the space between. These took up less memory and so drew on the screen faster. Those could be defined in an operating system, and were used not only to draw characters but also by some game designers to draw entire screens of information by defining a character as a block and so taking up less memory to do graphics.

These were scalable and by 1979 another German, Peter Karow, used spline algorithms wrote Ikarus, software that allowed a person to draw a shape on a screen and rasterize that. Now we could graphically create fonts that were scalable.

In the meantime, the team at Xerox PARC had been experimenting with different ways to send pages of content to the first laser printers. Bob Sproull and Bill Newman created the Press format for the Star. But this wasn’t incredibly flexible like what Karow would create. John Gaffney who was working with Ivan Sutherland ...

plus icon
bookmark

Gutenburg shipped the first working printing press around 1450 and typeface was born. Before then most books were hand written, often in blackletter calligraphy. And they were expensive. The next few decades saw Nicolas Jensen develop the Roman typeface, Aldus Manutius and Francesco Griffo create the first italic typeface. This represented a period where people were experimenting with making type that would save space.

The 1700s saw the start of a focus on readability. William Caslon created the Old Style typeface in 1734. John Baskerville developed Transitional typefaces in 1757. And Firmin Didot and Giambattista Bodoni created two typefaces that would become the modern family of Serif. Then slab Serif, which we now call Antique, came in 1815 ushering in an era of experimenting with using type for larger formats, suitable for advertisements in various printed materials. These were necessary as more presses were printing more books and made possible by new levels of precision in the metal-casting.

People started experimenting with various forms of typewriters in the mid-1860s and by the 1920s we got Frederic Goudy, the first real full-time type designer. Before him, it was part of a job. After him, it was a job. And we still use some of the typefaces he crafted, like Copperplate Gothic. And we saw an explosion of new fonts like Times New Roman in 1931.

At the time, most typewriters used typefaces on the end of a metal shaft. Hit a kit, the shaft hammers onto a strip of ink and leaves a letter on the page. Kerning, or the space between characters, and letter placement were often there to reduce the chance that those metal hammers jammed. And replacing a font would have meant replacing tons of precision parts. Then came the IBM Selectric typewriter in 1961. Here we saw precision parts that put all those letters on a ball. Hit a key, the ball rotates and presses the ink onto the paper. And the ball could be replaced. A single document could now have multiple fonts without a ton of work.

Xerox exploded that same year with the Xerox 914, one of the most successful products of all time. Now, we could type amazing documents with multiple fonts in the same document quickly - and photocopy them. And some of the numbers on those fancy documents were being spat out by those fancy computers, with their tubes. But as computers became transistorized heading into the 60s, it was only a matter of time before we put fonts on computer screens.

Here, we initially used bitmaps to render letters onto a screen. By bitmap we mean that a series, or an array of pixels on a screen is a map of bits and where each should be displayed on a screen. We used to call these raster fonts, but the drawback was that to make characters bigger, we needed a whole new map of bits. To go to a bigger screen, we probably needed a whole new map of bits. As people thought about things like bold, underline, italics, guess what - also a new file. But through the 50s, transistor counts weren’t nearly high enough to do something different than bitmaps as they rendered very quickly and you know, displays weren’t very high quality so who could tell the difference anyways.

Whirlwind was the first computer to project real-time graphics on the screen and the characters were simple blocky letters. But as the resolution of screens and the speed of interactivity increased, so did what was possible with drawing glyphs on screens.

Rudolf Hell was a German, experimenting with using cathode ray tubes to project a CRT image onto paper that was photosensitive and thus print using CRT. He designed a simple font called Digital Grotesk, in 1968. It looked good on the CRT and the paper. And so that font would not only be used to digitize typesetting, loosely based on Neuzeit Book.

And we quickly realized bitmaps weren’t efficient to draw fonts to screen and by 1974 moved to outline, or vector, fonts. Here a Bézier curve was drawn onto the screen using an algorithm that created the character, or glyph using an outline and then filling in the space between. These took up less memory and so drew on the screen faster. Those could be defined in an operating system, and were used not only to draw characters but also by some game designers to draw entire screens of information by defining a character as a block and so taking up less memory to do graphics.

These were scalable and by 1979 another German, Peter Karow, used spline algorithms wrote Ikarus, software that allowed a person to draw a shape on a screen and rasterize that. Now we could graphically create fonts that were scalable.

In the meantime, the team at Xerox PARC had been experimenting with different ways to send pages of content to the first laser printers. Bob Sproull and Bill Newman created the Press format for the Star. But this wasn’t incredibly flexible like what Karow would create. John Gaffney who was working with Ivan Sutherland ...

Previous Episode

undefined - Flight Part II: From Balloons to Autopilot to Drones

Flight Part II: From Balloons to Autopilot to Drones

In our previous episode, we looked at the history of flight - from dinosaurs to the modern aircraft that carry people and things all over the world. Those helped to make the world smaller, but UAVs and drones have had a very different impact in how we lead our lives - and will have an even more substantial impact in the future. That might not have seemed so likely in the 1700s, though - when unmann

Unmanned Aircraft Napoleon conquered Venice in 1797 and then ceded control to the Austrians the same year. He then took it as part of a treaty in 1805 and established the first Kingdom of Italy. Then lost it in 1814. And so they revolted in 1848. One of the ways the Austrians crushed the revolt, in part employing balloons, which had been invented in 1783, that were packed with explosives. 200 balloons packed with bombs later, one found a target. Not a huge surprise that such techniques didn’t get used again for some time. The Japanese tried a similar tactic to bomb the US in World War II - then there were random balloons in the 2020s, just for funsies.

A few other inventions needed to find one another in order to evolve into something entirely new. Radio was invented in the 1890s. Nikola Tesla built a radio controlled boat in 1898. Airplanes came along in 1903. Then came airships moved by radio. So it was just a matter of time before the cost of radio equipment came down enough to match the cost of building smaller airplanes that could be controlled with remote controls as well.

The first documented occurrence of that was in 1907 when Percy Sperry filed a patent for a kite fashioned to look and operate like a plane, but glide in the wind. The kite string was the first remote control. Then electrical signals went through those strings and eventually the wire turned into radio - the same progress we see with most manual machinery that needs to be mobile.

Technology moves upmarket, so Sperry Corporation the aircraft with autopilot features in 1912. At this point, that was just a gyroscopic heading indicator and attitude indicator that had been connected to hydraulically operated elevators and rudders but over time would be able to react to all types of environmental changes to save pilots from having to constantly manually react while flying. That helped to pave the way for longer and safer flights, as automation often does.

Then came World War I. Tesla discussed aerial combat using unmanned aircraft in 1915 and Charles Kettering (who developed the electric cash register and the electric car starter) gave us The Kettering Bug, a flying, remote controlled torpedo of sorts. Elmer Sperry worked on a similar device. British war engineers like Archibald Low were also working on attempts but the technology didn’t evolve fast enough and by the end of the war there wasn’t much interest in military funding.

But a couple of decades can do a lot. Both for miniaturization and maturity of technology. 1936 saw the development of the first navy UAV aircraft by the name of Queen Bee by Admiral William H. Stanley then the QF2. They was primarily used for aerial target practice as a low-cost radio-controlled drone. The idea was an instant hit and later on, the military called for the development of similar systems, many of which came from Hollywood of all places.

Reginald Denny was a British gunner in World War I. They shot things from airplanes. After the war he moved to Hollywood to be an actor. By the 1930s he got interested in model airplanes that could fly and joined up with Paul Whittier to open a chain of hobby shops. He designed a few planes and eventually grew them to be sold to the US military as targets. The Radioplane as they would be known even got joysticks and they sold tens of thousands during World War II.

War wasn’t the only use for UAVs. Others were experimenting and by 1936 we got the first radio controlled model airplane competition in 1936, a movement that continued to grow and evolve into the 1970s. We got the Academy of Model Aeronautics (or AMA) in 1936, who launched a magazine called Model Aviation and continues to publish, provide insurance, and act as the UAV, RC airplane, and drone community representative to the FAA. Their membership still runs close to 200,000.

Most of these model planes were managed from the ground using radio remote controls. The Federal Communications Commission, or FCC, was established in 1934 to manage the airwaves. They stepped in to manage what frequencies could be used for different use cases in the US, including radio controlled planes.

Where there is activity, there are stars. The Big Guff, built by brothers Walt and Bill Guff, was the first truly successful RC airplane in that hobbiest market. Over the next decades solid state electronics got smaller, cheaper, and more practical. As did the way we could transmit bits over those wireless links.

1947 saw the first radar-guided missile, the s...

Next Episode

undefined - Adobe: From Pueblos to Fonts and Graphics to Marketing

Adobe: From Pueblos to Fonts and Graphics to Marketing

The Mogollon culture was an indigenous culture in the Western United States and Mexico that ranged from New Mexico and Arizona to Sonora, Mexico and out to Texas. They flourished from around 200 CE until the Spanish showed up and claimed their lands. The cultures that pre-existed them date back thousands more years, although archaeology has yet to pinpoint exactly how those evolved. Like many early cultures, they farmed and foraged. As they farmed more, their homes become more permanent and around 800 CE they began to create more durable homes that helped protect them from wild swings in the climate. We call those homes adobes today and the people who lived in those peublos and irrigated water, often moving higher into mountains, we call the Peubloans - or Pueblo Peoples.

Adobe homes are similar to those found in ancient cultures in what we call Turkey today. It’s an independent evolution.

Adobe Creek was once called Arroyo de las Yeguas by the monks from Mission Santa Clara and then renamed to San Antonio Creek by a soldier Juan Prado Mesa when the land around it was given to him by the governor of Alto California at the time, Juan Bautista Alvarado. That’s the same Alvarado as the street if you live in the area. The creek runs for over 14 miles north from the Black Mountain and through Palo Alto, California. The ranchers built their adobes close to the creeks. American settlers led the Bear Flag Revolt in 1846, and took over the garrison of Sonoma, establishing the California Republic - which covered much of the lands of the Peubloans. There were only 33 of them at first, but after John Fremont (yes, he of whom that street is named after as well) encouraged the Americans, they raised an army of over 100 men and Fremont helped them march on Sutter’s fort, now with the flag of the United States, thanks to Joseph Revere of the US Navy (yes, another street in San Francisco bears his name).

James Polk had pushed to expand the United States. Manfiest Destiny. Remember The Alamo. Etc. The fort at Monterey fell, the army marched south. Admiral Sloat got involved. They named a street after him. General Castro surrendered - he got a district named after him. Commodore Stockton announced the US had taken all of Calfironia soon after that. Manifest destiny was nearly complete. He’s now basically the patron saint of a city, even if few there know who he was. The forts along the El Camino Real that linked the 21 Spanish Missions, a 600-mile road once walked by their proverbial father, Junípero Serra following the Portolá expedition of 1769, fell. Stockton took each, moving into Los Angeles, then San Diego. Practically all of Alto California fell with few shots. This was nothing like the battles for the independence of Texas, like when Santa Anna reclaimed the Alamo Mission.

Meanwhile, the waters of Adobe Creek continued to flow. The creek was renamed in the 1850s after Mesa built an adobe on the site. Adobe Creek it was. Over the next 100 years, the area evolved into a paradise with groves of trees and then groves of technology companies. The story of one begins a little beyond the borders of California.

Utah was initialy explored by Francisco Vázquez de Coronado in 1540 and settled by Europeans in search of furs and others who colonized the desert, including those who established the Church of Jesus Christ of Latter-day Saints, or the Mormons - who settled there in 1847, just after the Bear Flag Revolt. The United States officially settled for the territory in 1848 and Utah became a territory and after a number of map changes wher ethe territory got smaller, was finally made a state in 1896. The University of Utah had been founded all the way back in 1850, though - and re-established in the 1860s.

100 years later, the University of Utah was a hotbed of engineers who pioneered a number of graphical advancements in computing. John Warnock went to grad school there and then went on to co-found Adobe and help bring us PostScript. Historically, PS, or Postscript was a message to be placed at the end of a letter, following the signature of the author. The PostScript language was a language to describe a page of text computationally. It was created by Adobe when Warnock, Doug Brotz, Charles Geschke, Bill Paxton (who worked on the Mother of All Demos with Doug Englebart during the development of Online System, or NLS in the late 70s and then at Xerox PARC), and Ed Taft.

Warnock invented the Warnock algorithm while working on his PhD and went to work at Evans & Sutherland with Ivan Sutherland who effectively created the field of computer graphics. Geschke got his PhD at Carnegie Melon in the early 1970s and then went of to Xerox PARC. They worked with Paxton at PARC and before long, these PhDs and mathematicians had worked out the algorithms and then the languages to display images on computers while working on InterPress graphics at Xerox and Gerschke left Xerox...

Episode Comments

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/the-history-of-computing-6534/the-evolution-of-fonts-on-computers-29249706"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to the evolution of fonts on computers on goodpods" style="width: 225px" /> </a>

Copy