The Did You Know Show
[email protected] (Fred)
All episodes
Best episodes
Top 10 The Did You Know Show Episodes
Goodpods has curated a list of the 10 best The Did You Know Show episodes, ranked by the number of listens and likes each episode have garnered from our listeners. If you are listening to The Did You Know Show for the first time, there's no better place to start than with one of these standout episodes. If you are a fan of the show, vote for your favorite The Did You Know Show episode by adding your comments to the episode page.
The Did You Know Show 5
The Did You Know Show
11/23/07 • -1 min
*Fred's written explanation of the Rotation of Draining Water
*Wikipedia's explanation of the Coriolis Effect (use with caution)
The Did You Know Show 3
The Did You Know Show
10/22/07 • -1 min
Fred's Show has a promo at the end of the most recent The Tech Teachers!
The Did You Know Show
09/30/07 • -1 min
The Did You Know Show 11
The Did You Know Show
07/02/08 • -1 min
The Did You Know Show 15
The Did You Know Show
03/30/09 • -1 min
Streaming Audio: Click Below
For more information:
*Funnel Cloud Reports in the UK
*Skew-T Example
The Did You Know Show 2
The Did You Know Show
09/30/07 • -1 min
For further discussion, check out Fred's written explanation of thunder.
The Did You Know Show 1 - Green Clouds Hail Myth (Direct Link)
The Did You Know Show
09/03/07 • -1 min
The Did You Know Show 12
The Did You Know Show
08/18/08 • -1 min
*http://www.txtornado.net/weather : This site has not only the NCEP models, but also the UKMET and ECMWF. The UKMET and ECMWF are in a abbreviated form. This site is very user friendly.
*http://weather.cod.edu/: This site has similar products. It is from the College of DuPage.
*http://www.rap.ucar.edu/weather/: This is the NCAR webpage.
*http://www.weatheroffice.gc.ca/charts/index_e.html: This is the Canadian site.
*http://euler.atmos.colostate.edu/~vigh/guidance/: This shows several of the forecast tracks of tropical cyclones. Only the Atlantic basin and the northeast Pacific are available.
*http://moe.met.fsu.edu/tcgengifs/: This is some of the individual forecast tracks of tropical cyclones.
*Vacuum Tubes
*Transistors
*Silicon Chip
*GFS: Global Forecast System
*RUC: Rapid Update Cycle
The Did You Know Show 7
The Did You Know Show
01/13/08 • -1 min
Circulation of Tall Trees
by Fred Haase
Tallest trees:
How do the tallest trees in the world transport water over 300ft vertically from their roots to their tops without any moving parts? The world's tallest tree is a redwood that is 379ft tall. There are other species that occasionally exceed 350 ft. For examples; Eucalyptus regnans, douglas fir, and sitka spruce sometimes exceed 350 ft. Indeed! There is evidence that there were individual Eucalyptus regnans in Australia were even taller than the coastal redwoods before being cut down. However, no one measured their height while the trees were standing.
Things to understand before explaining water transport in tall trees.
Osmosis:
Consider a membrane that partitions a container. The same membrane is made of polymers are spaced far enough apart to allow small molecules such as water to pass through. However, the gaps between the polymers of this membrane will not permit large molecules such as sugar or proteins to pass through. If this membrane separates two fluids, such that on one side of the membrane is pure water; while on the other side is a solution of water and sugar. If the two sides of the membrane are initially at the same temperature and pressure, more water molecules will pass through the membrane from the side with the pure water to the side with the sugar solution than from the side with the sugar solution to the pure water side. Why? Since the sugar molecules occupy volume, there are fewer water molecules per unit volume on the solution side of the container than on the pure water side. Since heat is motion, and both sides have the same temperature, the percentage of water molecules that reach the membrane will pass through the membrane from both sides will be the same. However, since there are fewer water molecules per unit volume on sugar solution side of the membrane than there are on the pure water side, more water molecules will pass through the membrane from the pure water side than will pass through the membrane from the solution side. Thus, pressures will rise on the solution side and fall on the pure water side causing the membrane to bow towards the pure water side. This pressure difference that develops is called osmotic pressure. This is step one on explaining how water can be transported in a living plant without any moving parts.
Step 2. Tensile Strength of Water.
One of the amazing properties of liquids is that their molecules attract each other. This is the source of surface tension. Water molecules attraction for each other is greater than most other liquids. Experiments have shown that it takes a negative pressure of at least 24 atmospheres to pull apart a column of water. One may ask: how come a vacuum pump can not lift a column of water more than about 32ft? The reason is that a column of water that is being stretched will increase its length. The water molecules will be pulled farther apart. At time point, the column will break because the distance between the molecules will become so great that they can no longer attract each other. If the column has a surface exposed to air or a vacuum then as the column is stretched, the molecules at the exposed surface will also become farther apart. The random motion of molecules cause by heat will cause some of the interior water molecules to become inserted into the newly formed spaces between the molecules on the exposed surface allowing the surface to grow. That is, if there are any bubbles of air within the column, it will break at tensions far less than one atm.
That is the key. If a column of water between the roots and the leaves is bubble free, it can hold together even with a negative pressure exceeding 24 atm. If such negative pressures can be generated, then it would be possible to pull a column of water through a tube from the roots of a tall tree to the leaves much like pulling piano wire through a duct.
This brings us back to osmosis. The cells of the leaves of trees contain a solution of water, sugars, and proteins. The water in a tube extending from the roots to the leaves is a rather dilute solution. The cell walls between the tube and the leave cells will allow water molecules to diffuse through but block the movement of sugar and protein molecules. Thus, a strong negative pressure will develop between tubes and the cells in the leaves as the water diffuses into the leaves. It turns out just from the energy of molecular motion due to the fact that temperatures are well above absolute zero are more that enough to generate negative pressures in the plant tubes of at least 12 atm. This has been actually measured.
Thus, the mechanism of lifting water from the roots to the leaves has been accomplished. But there are complications.
Step...
Show more best episodes
Show more best episodes
FAQ
How many episodes does The Did You Know Show have?
The Did You Know Show currently has 20 episodes available.
What topics does The Did You Know Show cover?
The podcast is about Meteorology, Myths, Botany, Natural Sciences, Podcasts, Education, Science and Physics.
What is the most popular episode on The Did You Know Show?
The episode title 'The Did You Know Show 17' is the most popular.
How often are episodes of The Did You Know Show released?
Episodes of The Did You Know Show are typically released every 27 days, 11 hours.
When was the first episode of The Did You Know Show?
The first episode of The Did You Know Show was released on Sep 3, 2007.
Show more FAQ
Show more FAQ