Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
headphones
The AI Element

The AI Element

Element AI

profile image

1 Creator

profile image

1 Creator

AI is everywhere right now: in our news feeds, our devices, our homes. The hype is spreading quickly to permeate every industry, and the executives of the world want to know, “Beyond the hype, what can this tech actually do for my business?” Element AI’s Alex Shee sits down with influencers across several industries to investigate how AI is being used to disrupt and innovate.

1 Listener

bookmark
Share icon

All episodes

Best episodes

Top 10 The AI Element Episodes

Goodpods has curated a list of the 10 best The AI Element episodes, ranked by the number of listens and likes each episode have garnered from our listeners. If you are listening to The AI Element for the first time, there's no better place to start than with one of these standout episodes. If you are a fan of the show, vote for your favorite The AI Element episode by adding your comments to the episode page.

The AI Element - What’s an AI Strategy?
play

07/24/18 • 23 min

Successful adopters of AI develop an AI-first strategy supporting all functional areas of the business: marketing, product development, customer support, sales, and beyond. What does this look like in practice? Naomi Goldapple of Element AI, who consults with execs about AI strategy on the regular, provides some insight. Alex also talks to Chris Benson who was hired at Honeywell to inject AI into the traditional-but-transforming manufacturing and logistics space. He shares some case studies of AI transformation and touches on the pervasive fear of job loss. Featured in this episode: Naomi Goldapple, Program Director at Element AI Chris Benson, Chief Scientist for Artificial Intelligence & Machine Learning at Honeywell Safety & Productivity Solutions Mentioned in the episode: Element AI, AI solutions provider Honeywell, manufacturing and logistics conglomerate company Crash Destroys F-22 Test Model (Eric Schmitt for the New York Times, 1992) Atlanta Deep Learning Meetup (Meetup.com)

1 Listener

bookmark
plus icon
share episode
The AI Element - In Data We Trust?

In Data We Trust?

The AI Element

play

09/19/19 • 34 min

We don’t have enough control over our data—how it is collected, by whom, what it’s used for. We’re used to hitting “accept” to whatever agreement we need to use the online platforms, mobile apps and other digital services that run our daily lives. Yet public awareness is growing about the importance of privacy and data control. Major data breaches and scandals about the misuse of data have shown the failures of the private sector when it comes to self-regulation. Now, governments and policymakers are stepping in with efforts to address the power imbalance between consumers and big companies when it comes to data. It’s about time — the impact of artificial intelligence could exacerbate that power imbalance, and help the data-rich get richer. Element AI’s Marc-Etienne Ouimette spoke with some of those leading the charge around taking back control of our data and the notion of data trusts — think a union, but for your data. Guests Ed Santow, Australia’s Human Rights Commissioner Christina Colclough, Director of Platform and Agency Workers, Digitalisation and Trade at UNI Global Union Neil Lawrence, Professor of Machine Learning at the University of Sheffield Show Notes 03:40 - NSW police may be investigated for ‘secret blacklist’ used to target children - The Guardian 07:52 - 94% of Australians do not read all privacy policies that apply to them – and that’s rational behaviour - The Conversation 08:02 - Click to agree with what? No one reads terms of service, studies confirm - The Guardian 10:38 - Up for Parole? Better Hope You’re First on the Docket - The New York Times 14:45 - The GDPR Covers Employee/HR Data and It's Tricky - Dickson Wright 18:08 - Companies are trying to test if they can make employees wear fitness trackers - Business Insider 20:11 - Silicon Valley & the Netherlands: Drivers of the future of automation - Netherlands in the USA 23:34 - Data Trusts - Neil Lawrence, inverseprobability.com 23:48 - Data trusts could allay our privacy fears - The Guardian 32:32 - Data trusts: reinforced data governance that empowers the public - Element AI Further Reading What is a data trust? - Open Data Institute Data trusts: reinforced data governance that empowers the public - Element AI Uncertainty and the Governance Dilemma for Artificial Intelligence - Dan Munro Governing AI: Navigating Risks, Rewards and Uncertainty - Public Policy Forum Anticipatory regulation - Nesta Disturbing the ‘One Size Fits All’ Approach to Data Governance: Bottom-Up Data Trusts - Sylvie Delacroix & Neil Lawrence Human Rights and Technology Issues - Australian Human Rights Commission The Civic Trust - Sean McDonald & Keith Porcaro Facebook’s privacy policy is longer than the US Constitution - The Next Web Follow Us Element AI Twitter Element AI Facebook Element AI Instagram Alex Shee’s Twitter Alex Shee’s LinkedIn --------- Nous n’avons pas suffisamment de contrôle sur nos données : comment elles sont recueillies, par qui et à quoi elles servent. Nous sommes habitués à « accepter » tout accord dont nous avons besoin pour utiliser les plateformes en ligne, les applications mobiles et autres services numériques qui gèrent notre vie quotidienne. Pourtant, le public est de plus en plus conscient de l’importance de la protection de la vie privée et du contrôle des données. D’importantes atteintes à la protection des données et des scandales concernant l’utilisation abusive des données ont montré les échecs du secteur privé en matière d’autoréglementation. Aujourd’hui, les gouvernements et les décideurs s’efforcent de remédier au déséquilibre de pouvoir entre les consommateurs et les grandes entreprises lorsqu’il s’agit de données. Et ce n’est pas trop tôt! En effet, l’incidence de l’intelligence artificielle pourrait exacerber ce déséquilibre de pouvoir et aider les personnes riches en données à s’enrichir. Marc-Étienne Ouimette d’Element AI s’est entretenu avec certains des principaux responsables de la pr

1 Listener

bookmark
plus icon
share episode
The AI Element - Opening the AI Black Box
play

09/05/19 • 31 min

“Explainability” is a big buzzword in AI right now. AI decision-making is beginning to change the world, and explainability is about the ability of an AI model to explain the reasons behind its decisions. The challenge for AI is that unlike previous technologies, how and why the models work isn’t always obvious — and that has big implications for trust, engagement and adoption. Nicole Rigillo breaks down the definition of explainability and other key ideas including interpretability and trust. Cynthia Rudin talks about her work on explainable models, improving the parole-calculating models used in some U.S. jurisdictions and assessing seizure risk in medical patients. Benjamin Thelonious Fels says humans learn by observation, and that any explainability techniques need to take human nature into account. Guests Nicole Rigillo, Berggruen Research Fellow at Element AI Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, and Statistical Science at Duke University Benjamin Thelonious Fels, founder of AI healthcare startup macro-eyes Show Notes 01:11 - Facebook Chief AI Scientist Yann LeCun says rigorous testing can provide explainability01:58 - Berggruen Institute, Transformation of the Human Program05:34 - Judging Machines. Philosophical Aspects of Deep Learning - Arno Schubbach 06:31 - Do People Trust Algorithms More Than Companies Realize? - Harvard Business Review 08:25 - Introducing Activation Atlases - OpenAI10:52 - Learning certifiably optimal rule lists for categorical data (CORELS) - YouTube11:00 - CORELS: Learning Certifiably Optimal RulE ListS 11:45 - Stop Gambling with Black Box and Explainable Models on High-Stakes Decisions 16:52 - Transparent Machine Learning Models for Predicting Seizures in ICU Patients - Informs Magazine Podcast19:49 - The Last Mile: Challenges of deployment - StartupFest Talk24:41 - Developing predictive supply-chains using machine learning for improved immunization coverage - macro-eyes with UNICEF and the Bill and Melinda Gates Foundation Further Reading A missing ingredient for mass adoption of AI: trust - Element AI Breaking down AI’s trustability challenges - Element AI The Why of Explainable AI - Element AI Follow Us Element AI Twitter Element AI Facebook Element AI Instagram Alex Shee’s Twitter Alex Shee’s LinkedIn -- L’« Explicabilité » est un grand mot à la mode en IA en ce moment. La prise de décision en matière d’IA commence à changer le monde, et l’explicabilité concerne la capacité d’un modèle d’IA à expliquer les raisons qui sous-tendent ses décisions. Le défi pour l’intelligence artificielle est que, contrairement aux technologies précédentes, la façon dont les modèles fonctionnent et les raisons pour lesquelles ils fonctionnent ne sont pas toujours évidentes — et cela a de grandes répercussions sur la confiance, l’engagement et l’adoption. Nicole Rigillo décompose la définition de l’explicabilité et d’autres idées clés, y compris l’interprétabilité et la confiance. Cynthia Rudin parle de son travail sur les modèles explicables, l’amélioration des modèles de calcul des libérations conditionnelles utilisés dans certaines juridictions américaines et l’évaluation du risque de crise chez les patients médicaux. Benjamin Thelonious Fels estime que les humains apprennent par l’observation et que toute technique d’explication doit tenir compte de la nature humaine. Invités Nicole Rigillo, chercheuse de l’Institut Berggruen chez Element AI Cynthia Rudin, professeure d’informatique, de génie électrique et informatique, et de sciences statistiques à l’Université Duke Benjamin Thelonious Fels, fondateur de l’entreprise en démarrage macro-eyes œuvrant en IA dans le domaine de la santé Afficher les notes 01:11 – Yann LeCun, scientifique en chef de l’intelligence artificielle sur Facebook affirme que des tests rigoureux peuvent fournir des explications.01:58 – Institut Berggruen, Transformation du programme humain05:34 – Machines de

1 Listener

bookmark
plus icon
share episode
The AI Element - The 7 Sins of Enterprise AI Strategies
play

05/29/20 • 13 min

This is a special, short episode with a summary of lessons complementing our full-length interview with Element AI’s CTO Jeremy Barnes on “The 4 Personas of AI Adoption”. A lot of Jeremy’s work has him involved in the top level strategy of AI implementation for the Global 2000, and he’s recently synthesized “7 sins of Entreprise AI Strategies” based off of the common mistakes he has observed. From managing risk to accounting reforms to cultural enablement, these “sins” also come with suggestions for how boards and C-suites can best enable their AI strategies. ------------- Les 7 péchés des stratégies d’IA d’entreprise Voici un court épisode spécial avec un résumé des leçons complétant notre entretien complet avec Jeremy Barnes, directeur de la technologietechnique chez Element AI, sur « Les 4 personas de l’adoption de l’IA » Jeremy a beaucoup travaillé sur la stratégie de haut niveau de mise en œuvre de l’IA pour le Global 2000, et il a récemment synthétisé les « 7 péchés des stratégies d’IA d’entreprise » à partir des erreurs courantes qu’il a observées. De la gestion des risques aux réformes comptables en passant par l’habilitation culturelle, ces « péchés » s’accompagnent également de suggestions sur la manière dont les conseils d’administration et les cadres supérieurs peuvent mettre en œuvre au mieux leurs stratégies d’IA.
bookmark
plus icon
share episode
The AI Element - What AI Can’t Do

What AI Can’t Do

The AI Element

play

07/24/18 • 17 min

Societal hype around AI is a byproduct of a few recent scientific breakthroughs — speech recognition, computer vision, natural language processing — in short, a computer’s ability to acquire human senses and mimic the human brain. Yoshua Bengio (world-renowned professor and head of the Montreal Institute for Learning Algorithms) has been at the front lines of the Deep Learning Revolution that has enabled this kind of innovation. In this episode, he gives an overview of where the tech is actually at: how close is it to mirroring human senses? Featured in this episode: Yoshua Bengio, Head of the Montreal Institute for Learning Algorithms (MILA) Daniel Gross, Partner at Y Combinator and Head of the AI Track Mentioned in the episode: The Rise of Artificial Intelligence through Deep Learning (video), Yoshua Bengio at TEDxMontreal NIPS, the Annual Conference on Neural Information Processing Systems CIFAR, Canadian Institute for Advanced Research Asimov’s Three Laws of Robotics (Wikipedia) Artificial neural networks (Wikipedia)
bookmark
plus icon
share episode
The AI Element - Cybersecurity and Phishing Attacks
play

07/24/18 • 19 min

Every touchpoint with a prospect is an opportunity to nurture that relationship, but also a potential entry point for hackers. Given that cybercriminals are more resourceful than ever, cybersecurity experts need to be just as sharp. Oren Falkowitz is combining past experience at the NSA and US Cyber Command with AI to combat phishing attacks worldwide. In this episode, Alex Shee speaks to him and cybersecurity expert Frederic Michaud about how AI is currently being used to make businesses more safe. Featured in this episode: Frederic Michaud, Director at Element AI Oren Falkowitz, CEO of Area 1 Security Mentioned in the episode: Area 1 Security, performance-based cybersecurity company Hackers, Computer Outlaws: Segment about the history of phreaking (Video) John Draper AKA Cap’n Crunch, phone phreaker extraordinaire
bookmark
plus icon
share episode
The AI Element - Startups vs. Traditional Industry
play

07/24/18 • 25 min

As AI seeps into every industry, businesses are being forced to adapt. Old school industries may not be as lean or quick to pivot as startups, but they have access to a motherlode of funding and data. Still, red tape and outdated infrastructure may block them from the timely AI transformation they need to stay afloat tomorrow. Alex Shee speaks with serial AI entrepreneur JF Gagné about this tension between startups and more corporate environments. Then, 15-year veteran of the insurance industry Natacha Mainville shares some real-world examples of how AI is flipping the industry on its head, forcing incumbents to keep up. Featured in this episode: JF Gagné, CEO of Element AI Natacha Mainville, Chief Innovation Officer at TandemLaunch Mentioned in the episode: JDA Software, retail and supply chain solutions Element AI, AI solutions provider Convolutional neural networks (Wikipedia) Lemonade Renters & Home Insurance, insurance startup
bookmark
plus icon
share episode
The AI Element - Sustainability

Sustainability

The AI Element

play

11/28/19 • 35 min

This week we’re exploring if and how AI can help build a sustainable future. From solving climate change to improving health care, AI is being seen as a technology that can solve some of the world’s biggest problems. But can AI really save us? How can we be sure that AI for Good initiatives are actually helping the people they’re trying to reach? What role can, or should, AI practitioners play in finding solutions? Urvashi Vaneja explains why we should be skeptical of AI for Good initiatives that claim to be a cure-all and she shows how to start thinking constructively about how to do better. Sherif Elsayed-Ali shows how AI for Good can help scale the positive impact of human rights organizations and also why we need to expand our current understanding of human rights. Yoshua Bengio reflects on his recent research into different ways AI can be used to mitigate against and adapt to a changing climate. Yoshua also shares why he decided to use his machine learning expertise to try and solve climate change — and how others in the machine learning community can help, too. AI for Good Summit UN Sustainable Development Goals Tandem Research AI for All: 10 Social Conundrums for India: Working Paper - Tandem Research Artificial Intelligence apps risk entrenching India’s socio-economic inequities India’s healthcare: Private vs public sector - Aljazeera Sherif Elsayed-Ali - Twitter Amnesty Tech - Twitter Universal Declaration of Human Rights Training a single AI model can emit as much carbon as five cars in their lifetime - MIT Technology Review Tackling Climate Change with Machine Learning - Bengio et al., arXiv Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks - Schmidt et al., arXiv Use machine learning to find energy materials - Nature Additional Links AI-enabled human rights monitoring - Sherif Elsayed-Ali & Tanya O'Carroll Climate Change: How Can AI Help? - Alexandre Lacoste ------------- Cette semaine, nous examinons si et comment l’IA peut aider à bâtir un avenir durable. De la résolution du changement climatique à l’amélioration des soins de santé, l’IA est perçue comme une technologie qui peut résoudre certains des problèmes les plus importants du monde. Mais l’IA peut-elle vraiment nous sauver? Comment pouvons-nous être sûrs que les initiatives d’IA pour le bien aident réellement les personnes qu’elles essaient d’atteindre? Quel rôle les praticiens de l’IA peuvent-ils, ou devraient-ils, jouer dans la recherche de solutions? Urvashi Vaneja explique pourquoi nous devrions être sceptiques à l’égard des initiatives d’IA pour le bien qui prétendent être un remède universel, et elle montre comment commencer à penser de manière constructive à la façon de faire mieux. Sherif Elsayed-Ali montre comment l’IA pour le bien peut aider à mesurer l’effet positif des organisations de défense des droits de la personne et aussi pourquoi nous devons élargir notre compréhension actuelle des droits de la personne. Yoshua Bengio réfléchit à ses recherches récentes sur les différentes façons dont l’IA peut être utilisée pour atténuer les changements climatiques et s’y adapter. Yoshua explique également pourquoi il a décidé d’utiliser son expertise en apprentissage machine pour essayer de résoudre le problème du changement climatique, et comment d’autres membres de la communauté de l’apprentissage machine peuvent également aider. Sommet sur l’IA pour le bien Objectifs de développement durable des Nations Unies Recherche en tandem L’IA pour tous : 10 énigmes sociales pour l’Inde : Document de travail – Recherche en tandem Les applications d’intelligence artificielle risquent d’enraciner les inégalités socio-économiques de l’Inde Les soins de santé en Inde : Secteur privé vs secteur public – Aljazeera Sherif Elsayed-Ali – Twitter Amnesty Tech – Twitter Déclaration universelle des droits de l’homme Former un seul modèle d’IA peut émettre autant de carbone que cinq voitures dans leur
bookmark
plus icon
share episode
The AI Element - Bonus Episode - An Interview with Yohsua Bengio
play

12/10/19 • 36 min

Bonus Episode - An Interview with Yohsua Bengio Can AI be used to help solve Climate Change? If so, how? In this bonus interview, world renowned machine learning researcher Yoshua Bengio joins host Alex Shee to talk about AI’s role in solving the climate crisis. Segments of this interview was featured on our episode about sustainability, in which he shared some examples of how AI is being used to mitigate and adapt to climate change. In the full-length interview he shares his personal motivations for getting involved in climate action and goes in depth about his cross-disciplinary work to solve what he thinks is one of the world’s largest existential risks. 2:03 - Mila - Yoshua Bengio’s Lab 2:04 - IVADO - The Institute for Data Valorization 3:11 - Montreal Declaration for Responsible AI 7:55 - Tackling Climate Change with Machine Learning - Rolnick et al., arXiv 11:19 - Mila - AI for Humanity 11:30 - Mila - Climate Change 13:31 - Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks - Schmidt et al., arXiv 16:35 - GANS (Generative Adversarial Network) - Wikipedia 16:58 - Help the planet by uploading your pictures of flooded houses or buildings - Mila 19:10 - Use machine learning to find energy materials - Nature 23:20 - French-language federal leaders debate 2019 - Maclean’s 24:23 - MIT CSAIL Alliances Podcast 27: 16 - Greta Thunberg - Wikipedia 31:48 - AI Commons Additional Links Yoshua Bengio - Google Scholar Climate Change: How Can AI Help? - Alexandre Lacoste Climate Change AI EAI Orkestrator - Optimize the use of your compute and storage resources ------------- Épisode en prime – Entretien avec Yohsua Bengio L’IA peut-elle être utilisée pour aider à résoudre le problème du changement climatique? Si oui, comment? Dans cet entretien en prime, Yoshua Bengio, chercheur de renommée mondiale dans le domaine de l’apprentissage machine, se joint à l’animateur Alex Shee pour parler du rôle de l’IA dans la résolution de la crise climatique. Des extraits de cette entrevue ont été présentés dans notre épisode sur la durabilité, dans lequel il a donné quelques exemples de la façon dont l’IA est utilisée pour atténuer les changements climatiques et s’y adapter. Dans l’entrevue complète, il partage ses motivations personnelles pour s’impliquer dans l’action climatique et approfondit son travail interdisciplinaire pour résoudre ce qu’il considère comme l’un des plus grands risques existentiels du monde. 2:03 – Mila – Le laboratoire de Yoshua Bengio 2:04 – IVADO – Institut pour la valorisation des données 3:11 – Déclaration de Montréal pour une IA responsable 7:55 – Combattre le changement climatique par l’apprentissage machine – Rolnick et coll., arXiv 11:19 – Mila – IA pour l’humanité 11:30 – Mila – Changement climatique 13:31 – Visualiser les conséquences du changement climatique à l’aide de réseaux contradictoires à cycle constant – Schmidt et coll., arXiv 16:35 – GANS (Generative Adversarial Network) – Wikipédia 16:58 – Aidez la planète en téléchargeant vos photos de maisons ou bâtiments inondés – Mila 19:10 – Utiliser l’apprentissage machine pour trouver des matériaux énergétiques – Nature 23:20 – Débat des dirigeants fédéraux francophones 2019 – Maclean’s 24:23 – Balado MIT CSAIL Alliances 27:16 – Greta Thunberg – Wikipédia 31:48 – IA collective Liens supplémentaires Yoshua Bengio – Google Scholar Changement climatique : comment l’IA peut-elle venir en aide? – Alexandre Lacoste Changement climatique et IA EAI Orkestrator – Optimisez l’utilisation de vos ressources informatiques et de stockage
bookmark
plus icon
share episode
The AI Element - AI for Good

AI for Good

The AI Element

play

07/24/18 • 26 min

Charles C Onu is using AI to detect birth asphyxia in babies. His story is inspiring because of its impact on society and the field of healthcare (in 2016, 1,000,000 babies died from asphyxia), but also because of his humble beginnings. In this episode, Charles shows us that a passion for solving problems can help you overcome many obstacles. Host Alex Shee also sits down with Rediet Abebe, co-founder of Black in AI, to expand on how others are using AI to change not just their industry, but the world. Featured in the episode: Charles C Onu, Founder and AI Research Lead at Ubenwa Rediet Abebe, PhD candidate at Cornell, researching AI applications for social good Mentioned in the episode: Ubenwa, birth asphyxia detection system This Nigerian AI Health Startup Wants to Save Thousands of Babies’ Lives with a Simple App (Further reading) Supervised learning (Wikipedia) MOOC, Massive Open Online Courses (MOOCs) Black in AI (GitHub) Women in Machine Learning Mechanism Design for Social Good MacArthur Foundation, Understanding the Public Interest Implications of Artificial Intelligence Toward Ethical, Transparent and Fair AI/ML: A Critical Reading List (Further reading)
bookmark
plus icon
share episode

Show more best episodes

Toggle view more icon

FAQ

How many episodes does The AI Element have?

The AI Element currently has 21 episodes available.

What topics does The AI Element cover?

The podcast is about News, Business News and Podcasts.

What is the most popular episode on The AI Element?

The episode title 'In Data We Trust?' is the most popular.

What is the average episode length on The AI Element?

The average episode length on The AI Element is 28 minutes.

How often are episodes of The AI Element released?

Episodes of The AI Element are typically released every 13 days, 1 hour.

When was the first episode of The AI Element?

The first episode of The AI Element was released on Jul 19, 2018.

Show more FAQ

Toggle view more icon

Comments