Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
Recsperts - Recommender Systems Experts - #28: Multistakeholder Recommender Systems with Robin Burke

#28: Multistakeholder Recommender Systems with Robin Burke

04/15/25 • 95 min

Recsperts - Recommender Systems Experts

In episode 28 of Recsperts, I sit down with Robin Burke, professor of information science at the University of Colorado Boulder and a leading expert with over 30 years of experience in recommender systems. Together, we explore multistakeholder recommender systems, fairness, transparency, and the role of recommender systems in the age of evolving generative AI.

We begin by tracing the origins of recommender systems, traditionally built around user-centric models. However, Robin challenges this perspective, arguing that all recommender systems are inherently multistakeholder—serving not just consumers as the recipients of recommendations, but also content providers, platform operators, and other key players with partially competing interests. He explains why the common “Recommended for You” label is, at best, an oversimplification and how greater transparency is needed to show how stakeholder interests are balanced.

Our conversation also delves into practical approaches for handling multiple objectives, including reranking strategies versus integrated optimization. While embedding multistakeholder concerns directly into models may be ideal, reranking offers a more flexible and efficient alternative, reducing the need for frequent retraining.

Towards the end of our discussion, we explore post-userism and the impact of generative AI on recommendation systems. With AI-generated content on the rise, Robin raises a critical concern: if recommendation systems remain overly user-centric, generative content could marginalize human creators, diminishing their revenue streams.


Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:24) - About Robin Burke and First Recommender Systems
  • (26:07) - From Fairness and Advertising to Multistakeholder RecSys
  • (34:10) - Multistakeholder RecSys Terminology
  • (40:16) - Multistakeholder vs. Multiobjective
  • (42:43) - Reciprocal and Value-Aware RecSys
  • (59:14) - Objective Integration vs. Reranking
  • (01:06:31) - Social Choice for Recommendations under Fairness
  • (01:17:40) - Post-Userist Recommender Systems
  • (01:26:34) - Further Challenges and Closing Remarks

Links from the Episode:

Papers:

General Links:

  • Follow me on
plus icon
bookmark

In episode 28 of Recsperts, I sit down with Robin Burke, professor of information science at the University of Colorado Boulder and a leading expert with over 30 years of experience in recommender systems. Together, we explore multistakeholder recommender systems, fairness, transparency, and the role of recommender systems in the age of evolving generative AI.

We begin by tracing the origins of recommender systems, traditionally built around user-centric models. However, Robin challenges this perspective, arguing that all recommender systems are inherently multistakeholder—serving not just consumers as the recipients of recommendations, but also content providers, platform operators, and other key players with partially competing interests. He explains why the common “Recommended for You” label is, at best, an oversimplification and how greater transparency is needed to show how stakeholder interests are balanced.

Our conversation also delves into practical approaches for handling multiple objectives, including reranking strategies versus integrated optimization. While embedding multistakeholder concerns directly into models may be ideal, reranking offers a more flexible and efficient alternative, reducing the need for frequent retraining.

Towards the end of our discussion, we explore post-userism and the impact of generative AI on recommendation systems. With AI-generated content on the rise, Robin raises a critical concern: if recommendation systems remain overly user-centric, generative content could marginalize human creators, diminishing their revenue streams.


Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:24) - About Robin Burke and First Recommender Systems
  • (26:07) - From Fairness and Advertising to Multistakeholder RecSys
  • (34:10) - Multistakeholder RecSys Terminology
  • (40:16) - Multistakeholder vs. Multiobjective
  • (42:43) - Reciprocal and Value-Aware RecSys
  • (59:14) - Objective Integration vs. Reranking
  • (01:06:31) - Social Choice for Recommendations under Fairness
  • (01:17:40) - Post-Userist Recommender Systems
  • (01:26:34) - Further Challenges and Closing Remarks

Links from the Episode:

Papers:

General Links:

  • Follow me on

Previous Episode

undefined - #27: Recommender Systems at the BBC with Alessandro Piscopo and Duncan Walker

#27: Recommender Systems at the BBC with Alessandro Piscopo and Duncan Walker

In episode 27 of Recsperts, we meet Alessandro Piscopo, Lead Data Scientist in Personalization and Search, and Duncan Walker, Principal Data Scientist in the iPlayer Recommendations Team, both from the BBC. We discuss how the BBC personalizes recommendations across different offerings like news or video and audio content recommendations. We learn about the core values for the oldest public service media organization and the collaboration with editors in that process.

The BBC once started with short video recommendations for BBC+ and nowadays has to consider recommendations across multiple domains: news, the iPlayer, BBC Sounds, BBC Bytesize, and more. With a reach of about 500M+ users who access services every week there is a huge potential. My guests discuss the challenges of aligning recommendations with public service values and the role of editors and constant exchange, alignment, and learning between the algorithmic and editorial lines of recommender systems.
We also discuss the potential of cross-domain recommendations to leverage the content across different products as well as the organizational setup of teams working on recommender systems at the BBC. We learn about skews in the data due to the nature of an online service that also has a linear offering with TV and radio services.

Towards the end, we also touch a bit on QUARE @ RecSys, which is the Workshop on Measuring the Quality of Explanations in Recommender Systems.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:10) - About Alessandro Piscopo and Duncan Walker
  • (14:53) - RecSys Applications at the BBC
  • (20:22) - Journey of Building Public Service Recommendations
  • (28:02) - Role and Implementation of Public Service Values
  • (36:52) - Algorithmic and Editorial Recommendation
  • (01:01:54) - Further RecSys Challenges at the BBC
  • (01:15:53) - Quare Workshop
  • (01:23:27) - Closing Remarks

Links from the Episode:

Papers:

General Links:

Episode Comments

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/recsperts-recommender-systems-experts-537441/28-multistakeholder-recommender-systems-with-robin-burke-89540380"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to #28: multistakeholder recommender systems with robin burke on goodpods" style="width: 225px" /> </a>

Copy