Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
headphones
Real Science Exchange

Real Science Exchange

Balchem Animal Nutrition & Health

Balchem Real Science Exchange isn’t just any old boring podcast. You’ll get to know top researchers like you’ve never known them before. Go behind the scenes and hear the conversations that take place over a few drinks with friends. Join us as we discuss the hot topics in animal science and share a range of new ideas.
Share icon

All episodes

Best episodes

Top 10 Real Science Exchange Episodes

Goodpods has curated a list of the 10 best Real Science Exchange episodes, ranked by the number of listens and likes each episode have garnered from our listeners. If you are listening to Real Science Exchange for the first time, there's no better place to start than with one of these standout episodes. If you are a fan of the show, vote for your favorite Real Science Exchange episode by adding your comments to the episode page.

This episode of the Real Science Exchange podcast was recorded during a webinar from Balchem’s Real Science Lecture Series.

Dr. Goff sees three main challenges for transition cows: negative energy and protein balance, immune suppression, and hypocalcemia. About half of all older cows experience hypocalcemia, and around 3% will experience milk fever. Cows develop hypocalcemia if they are unable to replace the calcium lost in milk from either their bone or diet. Compared to the day before calving, a cow needs around 32 extra grams of protein the day of calving to meet her increased requirements. (2:00)

Dr. Goff reviews the pathways of calcium homeostasis and the actions of parathyroid hormone (PTH). Aged cows may have a harder time maintaining calcium homeostasis due to the loss of vitamin D receptors in the intestine with age and fewer sites of active bone resorption capable of responding quickly to PTH once they have finished growing. Blood pH plays a role in calcium homeostasis: when blood pH becomes alkaline, animals become less responsive to PTH. Dr. Goff reviews the impacts of high vs low DCAD diets and reviews the amount of time it takes for the kidney and bone to respond to PTH. (4:20)

There are several strategies to reduce the risk of hypocalcemia. One is to reduce dietary potassium so the cow is not as alkaline. Using forages from fields that have not had manure applied to them is one way to accomplish this. In addition, warm-season grasses (corn) accumulate less potassium than cool-season grasses, and all grasses contain less potassium as they mature (straw). A second strategy is to add anions such as chloride or sulfate to the diet to acidify the blood to improve bone and kidney response to PTH. Research has shown that sulfate salts acidify about 60% as well as chloride salts. The palatability of anionic diets has led to commercial products such as Soychlor. (13:06)

Dr. Goff then discusses the over- and under-acidification of diets and gives his opinion on the appropriate range of urine pH for proper DCAD diet management, including a new proposed DCAD equation to account for alkalizing and acidifying components of the diet. He also gives some options for pH test strips to use for urine pH data collection. (18:30)

Dr. Goff’s lab has found that as prepartum urine pH increases, the calcium nadir decreases. The inflection point is right around pH 7.5, where above 7.5 indicates a higher risk of hypocalcemia. Data from other researchers suggests that urine pH lower than 6.0 may result in lower blood calcium, indicating an overall curvilinear response. Low urine pH (under 6.0) has also been associated with a higher incidence of left-displaced abomasum. (29:02)

Moving on to other minerals, Dr. Goff discusses phosphate homeostasis and how that interacts with calcium in the close-up cow. Feeding too much phosphorus can decrease calcium absorption and feeding low phosphorus diets before calving can improve blood levels of calcium. He recommends less than 0.35% phosphorus in close-up cow diets. For magnesium,he recommends 0.4% prepartum and immediately postpartum to take advantage of passive absorption across the rumen wall. (31:08)

Another strategy to reduce milk fever risk is to reduce dietary calcium prior to calving to stimulate parathyroid hormone release well before calving. A zeolite product that binds calcium is now available and may make this much easier to achieve. (42:59)

In closing, Dr. Goff reminds the audience that some level of hypocalcemia post-calving is normal and in fact, is associated with higher milk production. The key is making sure that the cow’s blood calcium levels can bounce back to normal by day two after calving. (51:23)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode
Real Science Exchange - ADSA University Research of Interest
play

11/12/24 • 60 min

The Balchem technical team selected abstracts of interest from the 2024 American Dairy Science Association meetings to feature on this episode of the Real Science Exchange.

Whole Cottonseed and Fatty Acid Supplementation Affect Production Responses During the Immediate Postpartum in Multiparous Dairy Cows

Guests: Jair Parales-Giron and Dr. Adam Lock, Michigan State University (0:58)

The experiment had four treatment groups: no fat supplement, 10% of the diet from whole cottonseed, a 60:30 mix of calcium salts of palmitic and oleic acid at 1.5% of the diet dry matter, and a combination of both whole cottonseed and fatty acid supplement. Energy-corrected milk was increased by almost six kilograms in cows fed the whole cottonseed diet, with a similar increase of more than five kilograms in the fatty acid-supplemented cows during the first 24 days of lactation. However, no further improvement was observed when both whole cottonseed and fatty acids were fed together. The increase in milk production was not accompanied by increased weight loss or loss of body condition.

Effect of Close-Up Metabolizable Protein Supply on Colostrum Yield, Composition, and Immunoglobulin G Concentration

Guests: Dr. Trent Westhoff and Dr. Sabine Mann, Cornell University (17:06)

In this study, cows were assigned to one of two diets 28 days before expected calving: one that provided 39 grams of metabolizable protein (MP) per pound of dry matter and one that supplied 51 grams of MP per pound of dry matter. This represents about 100% of the MP requirement and 140% of the MP requirement, respectively. Diets were formulated to supply equal amounts of methionine and lysine. Cows entering their second parity who were fed the elevated MP diet produced two liters more colostrum than second parity cows fed the control MP diet. This effect was not observed in cows entering their third or higher parity. Overall, higher MP supply did not impact colostrum quantity or quality. Dr. Westhoff also highlights an invited review he authored regarding nutritional and management factors that influence colostrum production and composition. The MP research has also been published; links to both are below.

MP paper: https://www.sciencedirect.com/science/article/pii/S0022030224010774

Invited review: https://www.sciencedirect.com/science/article/pii/S0022030224000341

Colostrum—More than Immunoglobulin G (IgG): Colostrum Components and Effects on the Calf

Guest: Dr. Sabine Mann, Cornell University (41:23)

Dr. Mann presented this abstract at an ADSA symposium titled “Colostrum: The Role It Plays In Calf Health, Development, and Future Productivity.” Her focus was to give credit to the importance of IgG while reminding the symposium audience of the importance of other colostrum components like bioactive factors and nutrients. There is potential that measuring IgG could be a marker for all the other colostrum components that have been transferred as well. We have excellent and cost-effective ways to measure IgG calf-side, but very few bioactive factors can be measured as easily. Heat treatment of colostrum to control bacterial contamination has a detrimental effect on many of the non-IgG components of colostrum. More data is needed to learn how impactful this may be to the calf. Dr. Mann details parts of the heat treatment process that farmers can check to make sure heat treatment is having as little impact as possible. She also would like to have a way to measure the antimicrobial activity of colostrum and the concentrations of insulin and IGF-1 in colostrum on-farm. Lastly, she reminds the audience that we can focus a lot on making the best quality colostrum via transition cow management and best management practices for colostrum harvest, but we still need to get it into the calf. Colostrum must get into calves cleanly and safely, at an adequate amount, and at an optimal temperature.

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

This Real Science Exchange podcast episode was recorded during a webinar from Balchem’s Real Science Lecture Series.

The primary goal of a replacement program is to raise the highest quality heifer that can maximize profits when she enters the lactating herd. She carries no limitations that would detract from her ability to produce milk under the farm’s management system. Ideally, one would wish to optimize profits by obtaining the highest quality heifer at the lowest possible cost, usually in the least amount of time. Dr. Van Amburgh presents a snapshot evaluation of benchmarks to assess the potential quality of replacements. (3:47)

When does the process of creating a quality heifer start? Probably before conception. In non-pasture herds, the first lactation cows giving birth to heifers produced about 1000 pounds more milk in the first two lactations. Heifers whose dams were supplemented with choline during the pre-fresh period had higher birth-to-yearling average daily gains and improved immunity. Choline also appears to enhance the quality of colostrum via increased absorption of IgG. This implies that maternal programming extends beyond the uterine environment via ingestion of milk-borne factors, known as the lactocrine hypothesis (14:29)

After the calf is born, the goal is anabolism or growth. The dam communicates with the calf via colostrum to direct calf development after birth. Not only does colostrum provide immunoglobulins, but it also contains a large amount of nutrients and non-nutrient factors that support gut maturation. In particular, IGF-1 and insulin may act on receptors in the gut to stimulate cell proliferation, cell differentiation, and protein synthesis. Dr. Van Amburgh summarizes several studies that showed increased colostrum feeding improved pre- and post-weaning growth and development. While the immunoglobulin content of colostrum is essential for passive immunity, the other components in colostrum are responsible for the increased growth performance. (27:39)

The hormones and growth factors in colostrum enhance protein synthesis, enzyme expression, and gastrointestinal tract development. This implies that the gut is now an even stronger barrier to infection, with more surface area for digestion and absorption, with an increased capacity to digest nutrients due to higher enzyme excretion. (36:33)

To investigate the impact of non-nutrient factors in colostrum, studies were designed where calves were fed either colostrum or milk replacer with the same nutrient content. Glucose uptake was increased for colostrum calves even though both groups received similar nutrient content. Plasma glucagon was higher in colostrum calves, indicating better glucose status and higher reserve capacity. Plasma protein levels were higher in colostrum calves, suggesting more amino acids available for growth and protein synthesis. Plasma urea nitrogen was lower for colostrum calves, indicating fewer amino acids were used for gluconeogenesis leading to more efficient growth. (46:55)

What happens to immune cells in colostrum? Leukocytes and other immune-related cells in colostrum are trafficked into the circulation of the calf. Maternal leukocytes can be detected in the calf by 12 hours, peak at 24 hours, and disappear by 48 hours. Long term, there appears to be greater cellular immunity in calves that received whole colostrum compared to cell-free colostrum. Uptake of cells from colostrum enhances cellular immunity in calves by providing, mature, programmed cells from the dam. (52:24)

The take-home message for colostrum management is to feed colostrum for four days. Give first-milking colostrum within six hours of birth and again at 12 hours. Give second-milking colostrum for day two feeding and third- and fourth-milking colostrum for days three and four. (56:04)

Dr. Van Amburgh answers a few questions from the webinar audience about dry cow management for colostrum quality and quantity, the impacts of pasteurization of colostrum on components, and the efficacy of colostrum replacers. Watch the full webinar at balchem.com/realscience. (58:25)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

This Real Science Exchange podcast episode was recorded during a webinar from Balchem’s Real Science Lecture Series. You can find it at balchem.com/realscience.

How can we increase milk protein and capture that income opportunity? Dr. Van Amburgh describes the seasonal drop in milk protein observed in the summer months. Heat stress may play a role in altering insulin sensitivity and how the cow partitions nutrients. What can we do to avoid that seasonal decline in milk protein? (0:01)

Simple things like cooling, fans, and sprinklers can reduce heat stress and increase cow comfort. Dr. Van Amburgh recommends promoting dry matter intake and lying time, with feed available 21-22 hours per day and more than 12 hours of lying time per day. (5:27)

Dr. Van Amburgh discusses basic formulation considerations for amino acid balancing including current feed chemical analyses that include NDF digestibility, characterizing the cows appropriately by using accurate body weights, understanding DMI and making sure actual milk lines up with ME and MP allowable milk, assessing body condition changes, and understanding the first limiting nutrient of milk production. Areas where mistakes are often made include using much lighter body weights than actual to formulate rations, not using actual DMI, and using feed library values instead of actual feed chemistry. (8:00)

Milk protein percentage and dietary energy are closely aligned. This is often attributed to ruminal fermentation and microbial yield. Sugars, starches, and digestible fiber sources drive microbial yield. While protein and energy metabolism are considered to be separate, that is an artificial divide and they should be considered together. Once adequate energy for protein synthesis is available, providing more dietary protein or amino acids can increase protein synthesis further. Dr. Van Amburgh provides some ranges of target fermentable non-structural carbohydrates, starch, sugar and soluble fiber appropriate for early peak and mid-lactation cows. He speaks about the benefits of adding sugars to the diet instead of trying to continue to increase starch. (11:15)

Dr. Van Amburgh details an experiment using more byproduct feeds in a lactation diet to successfully increase intake and subsequently, milk protein content. (24:04)

Milk protein increases with higher DCAD in diets, independent of protein level. Increasing DCAD can also lead to increased DMI, probably through better fiber digestion. The mechanism is not completely understood, but perhaps some rumen microbes have a higher requirement for potassium. In another study, feeding higher DCAD resulted in an 11% increase in milk protein yield and a 26% increase in milk fat yield. (32:39)

Feeding fatty acids may also improve milk protein via insulin signaling pathways. A 5.6% increase in milk protein was observed when the ratio of palmitic acid to oleic acid was around 1.5:1. (36:21)

Dr. Van Amburgh encourages the audience to pay close attention to digestibility of dietary ingredients and shares an analysis of ten different sources of feather meal that varied in digestibility from around 50% up to 75%. (40:10)

Dr. Van Amburgh details an experiment targeting optimum methionine and lysine levels for improved milk protein. In an example with 60 Mcals of ME in the diet, the targets were 71 grams of methionine and 193 grams of lysine. (42:00)

Questions from the webinar audience were addressed. They included information about the best type of sugars to add to diets, if protozoa are preferentially retained in the rumen, BMR vs conventional corn silage, amino acid supply when dietary crude protein is around 14-15%, using metabolizable energy instead of net energy, variability of animal protein blends, and methionine to lysine ratios. (48:23)

To end this podcast, Dr. Jose Santos steps in to invite everyone to the Florida Ruminant Nutrition Symposium in Gainesville held February 24-26.

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

In times of limited forage, dairy producers may need to feed diets lower in forage than is typical but would like to maintain milk production. In this study, two diets similar in neutral detergent fiber (NDF), starch, and crude protein with different amounts of forage were fed to 32 mid-lactation Holstein cows in a crossover design. The control diet (CON) contained high forage (55.5% of diet dry matter) with no supplemental fatty acids or amino acids. The low-forage diet (LF) contained 36.6% forage along with supplemental fat and rumen-protected methionine and lysine. As forage was removed from the LF diet, it was replaced with byproducts and high-moisture corn was replaced with dry corn. (4:42)

Dr. Lock added fat and amino acid supplements to the LF diet to not lose milk production. The fat supplement was a palmitic-acid-rich prill. Dr. Lock does not think the response would have been the same if a different fat supplement had been used. The LF diet was higher in fat and palmitic acid, but most other fatty acids were fairly similar between the two diets. (16:25)

Milk yields were similar between the two diets. Cows on the LF diet consumed about 1 kg more dry matter each day than CON-fed cows. Cows fed the LF diet also had higher milk fat and milk protein yields and content which led to an approximately 2 kg increase in energy-corrected milk compared to cows fed the CON diet. Dr. Lock believes the fat and amino acid supplementation were a key part of achieving these results, and they would not have seen the same response if those supplements had not been added to the LF diet. The LF diet spared around 5.5-6 kg of forage per day, and cows gained body condition. (22:03)

Dr. Weiss asks Dr. Lock to speculate if low-forage diets fed for longer periods would have negative health impacts. Dr. Lock feels that usually production would be negatively impacted by cow health issues, which was not the case here. However, if high-moisture corn had been used in the LF diet, he predicts they would have seen negative impacts. (27:18)

What about low-forage diets for early lactation cows? Dr. Lock suggests looking at diets in other parts of the world where forage is limited and see how dairy producers manage diets in those instances. He speculates that lower forage could be successfully implemented in early lactation cows after the fresh period. (31:09)

Dr. Weiss and Dr. Lock discuss the apparent improved digestibility of the LF diet given the increased production. While byproduct ingredients are often more fermentable in vitro, the results don’t always translate in vivo. Palmitic acid supplementation has been shown to improve fiber digestibility, so that may have happened in this experiment. (32:12)

On the protein side, we’ve moved away from talking about crude protein in the diet and toward amino acid concentrations. Dr. Lock would like to see the same trend in the industry for fat in the diet. A good leap was made recently from ether extract to total fatty acids, and he hopes to see individual fatty acids as the next step in that evolution. He recommends two questions be asked when considering a new fatty acid supplement. What is the fatty acid profile? What is the total fat content? The appropriate fatty acid profile is going to depend on the basal diet and what type of cow is being fed. Dr. Lock’s preference is a palmitic: oleic acid blend around 70:20 or 60:30 early in lactation, with a higher palmitic blend later in lactation. He expects the current work with different oilseeds to provide some good recommendations for feed ingredients to incorporate to increase dietary fat. (35:53)

As genetics continue to improve and nutrient requirements of cows continue to increase, is it conceivable that someday we are going to purposefully decrease fiber in the diet? While that may be the case, Dr. Lock reminds listeners that about half of milk fat comes from acetate and butyrate produced in the rumen, so fiber is still going to be critical. While we may lower the forage in a diet, forage quality is going to remain very important. (39:45)

The panel wraps up with their take-home messages from this paper. Clay looks forward to more research with a factorial design to further evaluate low-forage diets. Dr. Weiss reminds listeners there’s no one recipe for diets to achieve high yields of milk components. Lastly, Dr. Lock is excited about the future of research in this area and refining diet formulation in the area of fat supplementation. (43:21)

You can find this episode’s journal club paper from JDS Communications here: https://www.sciencedirect.com/science/article/pii/S2666910223001084

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to a...

bookmark
plus icon
share episode

This Real Science Exchange podcast episode was recorded during a webinar from Balchem’s Real Science Lecture Series. You can find it at balchem.com/realscience.

Feeding behavior of dairy cows is inherently tied to their dry matter intake (DMI) which is tied to milk production. If we want to change a cow’s DMI, it must be mediated by changing her feeding behavior. (00:23)

In a multi-variable analysis, Dr. DeVries found that DMI was most associated with feeding time and meal frequency. It’s important to allow the cow to maximize the amount of time she can spend at the bunk eating, as well as the number of times she can get to the bunk each day. In one study, about 30% of the variability in milk fat content in cows on the same diet was explained by their meal frequency, where cows who had more meals per day had higher milk fat. Dr. DeVries also talks about the impacts of feeding behavior on cow efficiency and rumen dynamics. (2:13)

As soon as a cow sorts the TMR put in front of her, she consumes a diet that’s variable in composition to what we expect. Cows who sorted against long feed particles had lower milk fat and milk protein concentrations. In another study, Dr. DeVries retrospectively analyzed cows with a low vs high risk of ruminal acidosis. Cows in both groups had similar DMI but a tendency for high-risk cows to have lower milk yield and numerically lower milk fat. Combining these resulted in significantly lower fat-corrected milk for the high-risk cows. Given that the diets and DMI were similar, the difference was attributed to sorting, which can have quite negative impacts on individual and herd-level production. (10:00)

Cows spend nearly twice as much time ruminating as they do eating. Rumination reduces feed particle size and increases surface area, leading to increased rates of digestion and feed passage. In a recent study, Dr. DeVries’ group calculated the probability that cows were ruminating while lying down using automated monitoring data from previous experiments. Cows with a higher probability of ruminating while lying down had higher DMI, milk fat, and milk protein than cows who ruminated while standing. This highlights that cows need not only time to ruminate but also space for sufficient rest. (16:44)

Diets and diet composition should be formulated to encourage frequent meals, discourage sorting, and stimulate rumination. Forage management factors including forage quality, forage quantity, forage type (dry vs ensiled), and particle size all play important roles. In a study with fresh cows, Dr. DeVries’ lab fed two different particle sizes of straw: 5-8 cm vs 2-3 cm in length. While DMI was the same over the first 28 days of lactation, cows fed the long straw spent more time with rumen pH below 5.8 because they were sorting against the straw. This also resulted in a yield difference, as the short straw-fed cows produced about 165 pounds more milk over the first 28 days compared to the long straw group. Dr. DeVries also comments on the use of feed additives on rumen stability and feeding behavior (22:54)

More frequent feed delivery should generate more consistent consumption and better feeding behavior, and improve rumen health and milk component concentration. Shifting feed delivery away from return from milking, while still ensuring cows have abundant feed available, results in more consistent eating patterns. Dr. DeVries emphasizes that we push up feed to make sure it’s present at the bunk, not to stimulate cows to eat. We want to make sure that eating behavior is driven by the cow: when she's hungry and goes to the bunk, we need to make sure feed is there. (30:02)

Dr. DeVries indicates we want to minimize the time cows are without feed completely. An empty bunk overnight plus a little overcrowding resulted in negative impacts on rumen health, including more acidosis and reduced fiber digestibility. Increased competition in overcrowding scenarios results in cows having larger meals, eating faster, and likely having a larger negative ruminal impact. In another study, every four inches of increased bunk space was associated with about 0.06% greater milk fat. Herds with high de novo fat synthesis were 10 times more likely to have at least 18 inches of bunk space per cow. (40:04)

In closing, Dr. DeVries’ biggest takeaway is that how cows eat is just as important as the nutritional composition of the feed in ensuring cow health, efficiency, and production. Collectively, with good quality feed and good feeding management, we can gain optimal performance from those diets. Dr. DeVries ends by taking questions from the webinar audience. (43:40)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. ...

bookmark
plus icon
share episode

Dr. Overton presented on this topic in a Real Science Lecture series webinar on July 10, 2024. You can find it at www.balchem.com/realscience. This episode takes a deeper dive into the conversation.

Dr. Overton begins by reminding listeners of the vast number of changes occurring in the fresh cow during the first two to three weeks after calving. Body fat and protein mobilization, some systemic inflammation, the potential for elevated NEFAs and ketones, and calcium dynamics all play a role in how the fresh cow starts her lactation period. (7:31)

When consulting with clients, Dr. Faldet uses research to guide his decisions. He likes to implement a 14-day pen for fresh cows, ranging from 10-17 days. He evaluates things like stocking rates, lockup times, and cow comfort, along with fine-tuning a diet for each individual farm setting. (9:14)

The panel discusses the importance of increasing effective fiber along with starch in fresh cow diets. Without adequate effective fiber in the diet, the risk of acidosis increases, resulting in cows going off feed. There is no silver bullet; each farm’s fresh cow diet is going to be different due to different forage bases and timing in the fresh cow group. (13:02)

Both Dr. Faldet and Dr. Overton stressed the diet is only one component of a successful fresh cow program. Other critical pieces include stocking rate, availability of feed, water quantity and quality, and cow comfort. Dr. Faldet suggests that if you do all these non-diet factors right, you could probably maneuver closeup and fresh pens a little differently and make the diet work with the ingredients you have. Dr. Overton’s group is conducting survey work evaluating the variability in particle size in closeup diets. A pilot study showed that as particle size variability increased, so did fresh cow health issues and poor postpartum metabolic status. (19:10)

Protein requirements of the fresh cow were another topic of Dr. Overton’s webinar. He described a recent experiment evaluating standard and high metabolizable protein concentrations in the diet for closeup and fresh cows. The postpartum MP gave a big milk response, around 15-16 pounds per day for the first 21 days after calving, with a carryover effect of 11-12 pounds of milk for the next 20 days after all cows went back on the same diet. It’s important to note that lysine and methionine were fixed regardless of treatment, so it seems that other amino acids are probably involved in the mechanism of action. (23:06)

Dr. Overton described an experiment designed to evaluate starch and fiber in fresh cow diets where higher fiber digestibility and increased corn in silage resulted in less fiber and more starch than anticipated in the diet. Fresh cows were a bit of a trainwreck, but the problem was resolved once another couple of pounds of straw were added to the diet. On the other hand, you can go too far with increased fiber in fresh cow diets, which results in ketosis, lower intakes, and less milk production. (35:19)

The panel then discusses far-off programs, fat supplementation in fresh cow diets, and vitamin and mineral concentrations for fresh cows. (42:37)

In summary, each panelist shares their takeaways. Dr. Elliott reminds listeners that we should think about starch, fat, fiber, and protein together and how they influence each other rather than considering them individually. Dr. Faldet’s take-home message is to know what your targets and bookends are and really hone in and implement your fresh cow diets accordingly. Dr. Overton suggests that the industry will shift to evaluating fresh cow diets as their own thing rather than trying to tweak a few things from your high cow diet. Implementing fresh cow diets consistently and well is going to be important. (53:30)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

Nutritionists are often blamed for transition cow problems like high NEFAs, clinical and subclinical ketosis, and subclinical hypocalcemia. Dr. Baumgard suggests these symptoms are a result of one of two situations: 1. These are highly productive, healthy, and profitable cows; or 2. The symptoms are the metabolic reflection of immune activation, likely stemming from metritis, mastitis, pneumonia, or GI tract inflammation. In the first scenario, the nutritionist deserves a raise; in the second, these are mostly management issues not caused by nutrition. (1:26)

If listeners are interested in more detail on this topic, Dr. Baumgard suggests reading this 2021 review in the Journal of Dairy Science: “ Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas.”

Link: https://www.sciencedirect.com/science/article/pii/S0022030221006329

Dr. Baumgard highlights key concepts that underpin his thinking regarding transition cows: The best indicators of health are feed intake and milk yield, it’s too easy to overthink the immune system, Mother Nature is rarely wrong, and inconsistent or non-reproducible data should create doubt. He goes on to review the incidence of metabolic disorders in early lactation and the energy balance dynamics of the transition period. (4:29)

For decades, we’ve had the assumption that NEFAs and ketones are causing many of the health issues in transition cows. NEFAs, BHBs, and calcium have been correlated and associated with negative outcomes. However many other studies do not find these negative correlations or associations. Plasma NEFA is markedly increased following calving in almost all cows, yet only 15-20% get clinical ketosis. Dr. Baumgard suggests that it’s presumptuous and reductionist of us to assume we can use one metabolite to diagnose the disease. Little mechanistic evidence exists to explain how these symptoms cause metabolic disease issues. (10:29)

If hyperketonemia, high NEFA, and subclinical hypocalcemia are causing disease, then therapeutically treating these disorders would improve overall cow health. NAHMS data does not back that up. Dr. Baumgard dissects the dogma of ketosis. In short, mobilization of adipose tissues and partial conversion of NEFA to ketones is essential for maximum milk yield. (18:35)

High-producing cows are more hypoinsulinemic compared to low-producing cows, and transition period insulin concentrations are inversely related to whole lactation performance. Low insulin concentrations coupled with insulin resistance allow for fat mobilization. (29:02)

Post-calving inflammation occurs in all cows. Sources include the mammary gland, the uterus, and the gut. Severe inflammation precedes the clinical presentation of the disease. In one experiment, all cows exhibited some inflammation in very early lactation. However, cows that were culled or died before 100 days in milk were already severely inflamed during the first few days of lactation. Dr. Baumgard thinks inflammation is the simplest and most logical explanation for why some cows don't eat well before and after calving. (31:13)

While clinical hypocalcemia (milk fever) is pathological and requires immediate intervention, is subclinical hypocalcemia detrimental to health, productivity, and profitability? (36:33)

Dr. Baumgard’s paradigm-shifting concept suggests that increased NEFA and hyperketonemia are caused by immune activation-induced hypophagia, and hypocalcemia is a consequence of immune activation. He goes on to use a high-producing, a low-producing, and a sick cow to illustrate this concept. (43:26)

In summary, the metabolic adjustments in minerals and energy during the transition period are not dysfunctional and don’t need to be “fixed.” The real fix is to prevent immune activation in the first place to prevent the cow from going off feed. Profitable production is a consequence of wellness. (52:19)

Dr. Baumgard takes a series of engaging questions from the webinar audience. Watch the full webinar at balchem.com/realscience. (56:04)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

Please note the recording was before the new NASEM model was released. However, there is still a lot of good information from Dr. Weiss beyond those recommendations. This Real Science Exchange podcast episode was recorded during a webinar from Balchem’s Real Science Lecture Series. You can find it at balchem.com/realscience.

Most ration formulation software uses the 2001 NRC mineral equations. The basic concept of the 2001 NRC mineral requirements is to feed enough absorbable minerals to maintain adequate labile body stores and fluid concentrations. Minerals are lost each day via excretion in feces and urine, milk production, and incorporation into tissues or the fetus in the case of growing or pregnant animals. We have decent data to predict mineral concentrations of milk, growth, and the fetus; however, the endogenous loss in feces is much harder to capture. Absorption coefficients (AC) for most minerals are exceedingly difficult to measure. (0:29)

The NRC requirements are the means of several experiments. Feeding to the mean results in half the cows being fed adequately or in excess, and half are not fed enough. In human nutrition, recommended daily allowances for vitamins and minerals are calculated as the mean plus two standard deviations, which statistically meets the requirement for 97% of the population. Since the standard deviation of the requirement is hard to acquire, human nutrition uses the same standard deviation for energy metabolism, around 20%. Dr. Weiss feels this is a reasonable safety factor for minerals for animals as well. He recommends feeding about 1.2 times the NRC requirement while keeping an eye on the maximum tolerable limit for the mineral in question. (4:59)

How do we measure absorption? We measure the minerals in the diet, we apply AC, and we get grams or milligrams of absorbed minerals available for the animal to use. Dr. Weiss details some of the complex methodology involved in trying to obtain AC. Feces contain not only unabsorbed dietary minerals but also endogenous/metabolic minerals (e.g., intestinal cells, enzymes, etc.) and homeostatic excretion of minerals (e.g., dumping excess minerals). In the 2001 NRC, the endogenous fecal for almost every mineral is a function of body weight, which is incorrect. It should be a function of dry matter intake. (8:40)

Endogenous fecal losses can also be measured using stable or radioactive isotopes. This method is extremely expensive and if radioactive isotopes are used, management of radioactive waste becomes an issue. Thus, most of the AC for trace minerals that used these methods are 50-60 years old. (15:33)

Dr. Weiss details some of the issues with calcium requirements in the 2001 NRC leading to overestimation of calcium absorption for many calcium sources and overestimation of the maintenance requirement due to endogenous fecal being calculated using body weight. Organic and inorganic phosphorus have different AC, so partitioning between organic and inorganic will give a more accurate estimate of the requirement. (16:33)

Potassium has a linear antagonistic effect on magnesium. You can feed more magnesium to overcome this antagonism, but you won’t ever eliminate it. If you feed a few percent added fat as long-chain fatty acids, Dr. Weiss recommends feeding 10-20% more magnesium to account for soap formation in the rumen. (19:17)

It’s much more difficult to measure AC for trace minerals due to multiple antagonists, interactions among different minerals, and regulated absorption. In addition, AC for trace minerals is very low, which means a small change in the AC can have a huge impact on diet formulation. All feeds in the NRC system have the same AC for each trace mineral and we know that’s not right. (25:39)

Dr. Weiss gives an overview of different trace mineral antagonisms and interactions and details his approach to formulation if he has absorption data for a particular ingredient. He also gives his estimates of revised AC for several minerals. (28:07)

In summary, the factorial NRC approach only fits 50% of the population. Feeding an extra 10-20% above the NRC requirement includes about 97% of the population. We need to continue to account for more sources of variation in AC. Interactions need to be top of mind when considering mineral requirements and diet formulation. (37:39)

Dr. Weiss takes a series of questions from the webinar audience. (40:50)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

In this episode, we honor and celebrate the remarkable career and contributions of Dr. Jim Drackley from the University of Illinois, a pioneer in dairy science and animal nutrition. Jim’s work has reshaped our understanding of dairy cow health, metabolism and nutrition. Dr. Cardoso, Dr. Overton, and co-host Dr. Jeff Elliott are former coworkers or graduate students of Dr. Drackley’s. (0:11)

Dr. Drackley begins by telling the audience about his background and how he became a dairy scientist. He talks about several of his mentors during his schooling. (9:20)

Speaking of mentors, Scott asks Dr. Elliot, Dr. Overton, and Dr. Cardoso to describe Dr. Drackley’s mentorship of them during teaching, graduate school and beyond. They praise Jim’s thoughtfulness and hands-off approach that taught them to think critically. (14:06)

When it comes to major contributions to the industry, Dr. Drackley names two that he is most proud of: expanding the knowledge of controlled energy dry cow programs using straw and corn silage to help control energy intake and his work in baby calf nutrition, specifically feeding more milk on-farm to calves. Dr. Overton adds that a visionary paper Dr. Drackley wrote in the late 1990s where he referred to the transition period as the final frontier as another important contribution. Dr. Cardoso also emphasizes Dr. Drackley’s excellent teaching skills as another achievement of note. (20:58)

Dr. Drackley says the teaching part of the job was the part that scared him the most when he started. Graduate school offers little formal teaching training and experience so one learns on the job. Jim describes his teaching style as organized, and he liked teaching in an outline fashion, working from the main topic down through the details. He worked hard to get to know the students, learn their names as soon as possible, and be approachable and empathetic. Later in his career, he used a flipped classroom approach for a lactation biology course and enjoyed it. (28:45)

The panel then reminisces about how much technology has changed from a teaching perspective as well as statistical analysis. Lecturing has moved from chalkboard to overhead projector to slide carousel to PowerPoint. Statistical analysis has moved from punch cards or sending data to a mainframe computer to performing real-time statistical analysis on your computer at your desk. (33:00)

Jeff, Phil, and Tom share stories and memories of their time with Jim. (37:30)

Scott asks Jim what challenges will need to be tackled in the future in the dairy industry. He lists environmental aspects (nitrogen, phosphorus, and greenhouse gases), increasing economic pressure on farms, and improving forage production and efficiency of nutrient use. Dr. Drackley’s advice for young researchers is to carve out a niche for yourself. (47:40)

Dr. Elliott, Dr. Overton, and Dr. Cardoso share some final thoughts paying tribute to Dr. Drackley and his accomplished career. (1:06:18)

Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table.

If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to [email protected]. Include your size and mailing address, and we’ll mail you a shirt.

bookmark
plus icon
share episode

Show more best episodes

Toggle view more icon

FAQ

How many episodes does Real Science Exchange have?

Real Science Exchange currently has 147 episodes available.

What topics does Real Science Exchange cover?

The podcast is about Life Sciences, Dairy, Natural Sciences, Podcasts and Science.

What is the most popular episode on Real Science Exchange?

The episode title 'Real Science Exchange: Not All Encaps Are Created Equal with Dr. Zimmerman, Kari Estes & Dr. Hanigan' is the most popular.

What is the average episode length on Real Science Exchange?

The average episode length on Real Science Exchange is 59 minutes.

How often are episodes of Real Science Exchange released?

Episodes of Real Science Exchange are typically released every 13 days, 23 hours.

When was the first episode of Real Science Exchange?

The first episode of Real Science Exchange was released on Sep 29, 2020.

Show more FAQ

Toggle view more icon

Comments