
Bacteriophages
08/01/24 • 50 min
Melvyn Bragg and guests discuss the most abundant lifeform on Earth: the viruses that 'eat' bacteria. Early in the 20th century, scientists noticed that something in their Petri dishes was making bacteria disappear and they called these bacteriophages, things that eat bacteria. From studying these phages, it soon became clear that they offered countless real or potential benefits for understanding our world, from the tracking of diseases to helping unlock the secrets of DNA to treatments for long term bacterial infections. With further research, they could be an answer to the growing problem of antibiotic resistance.
With
Martha Clokie Director for the Centre for Phage Research and Professor of Microbiology at the University of Leicester
James Ebdon Professor of Environmental Microbiology at the University of Brighton
And
Claas Kirchhelle Historian and Chargé de Recherche at the French National Institute of Health and Medical Research’s CERMES3 Unit in Paris.
Producer: Simon Tillotson
In Our Time is a BBC Studios Audio Production
Reading list:
James Ebdon, ‘Tackling sources of contamination in water: The age of phage’ (Microbiologist, Society for Applied Microbiology, Vol 20.1, 2022)
Thomas Häusler, Viruses vs. Superbugs: A Solution to the Antibiotics Crisis? (Palgrave Macmillan, 2006)
Tom Ireland, The Good Virus: The Untold Story of Phages: The Mysterious Microbes that Rule Our World, Shape Our Health and Can Save Our Future (Hodder Press, 2024)
Claas Kirchhelle and Charlotte Kirchhelle, ‘Northern Normal–Laboratory Networks, Microbial Culture Collections, and Taxonomies of Power (1939-2000)’ (SocArXiv Papers, 2024)
Dmitriy Myelnikov, ‘An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922–1955’ (Journal of the History of Medicine and Allied Sciences 73, no. 4, 2018)
Forest Rohwer, Merry Youle, Heather Maughan and Nao Hisakawa, Life in our Phage World: A Centennial Field Guide to Earth’s most Diverse Inhabitants (Wholon, 2014)
Steffanie Strathdee and Thomas Patterson (2019) The Perfect Predator: A Scientist’s Race to Save Her Husband from a Deadly Superbug: A Memoir (Hachette Books, 2020)
William C. Summers, Félix d`Herelle and the Origins of Molecular Biology (Yale University Press, 1999)
William C. Summers, The American Phage Group: Founders of Molecular Biology (University Press, 2023)
Melvyn Bragg and guests discuss the most abundant lifeform on Earth: the viruses that 'eat' bacteria. Early in the 20th century, scientists noticed that something in their Petri dishes was making bacteria disappear and they called these bacteriophages, things that eat bacteria. From studying these phages, it soon became clear that they offered countless real or potential benefits for understanding our world, from the tracking of diseases to helping unlock the secrets of DNA to treatments for long term bacterial infections. With further research, they could be an answer to the growing problem of antibiotic resistance.
With
Martha Clokie Director for the Centre for Phage Research and Professor of Microbiology at the University of Leicester
James Ebdon Professor of Environmental Microbiology at the University of Brighton
And
Claas Kirchhelle Historian and Chargé de Recherche at the French National Institute of Health and Medical Research’s CERMES3 Unit in Paris.
Producer: Simon Tillotson
In Our Time is a BBC Studios Audio Production
Reading list:
James Ebdon, ‘Tackling sources of contamination in water: The age of phage’ (Microbiologist, Society for Applied Microbiology, Vol 20.1, 2022)
Thomas Häusler, Viruses vs. Superbugs: A Solution to the Antibiotics Crisis? (Palgrave Macmillan, 2006)
Tom Ireland, The Good Virus: The Untold Story of Phages: The Mysterious Microbes that Rule Our World, Shape Our Health and Can Save Our Future (Hodder Press, 2024)
Claas Kirchhelle and Charlotte Kirchhelle, ‘Northern Normal–Laboratory Networks, Microbial Culture Collections, and Taxonomies of Power (1939-2000)’ (SocArXiv Papers, 2024)
Dmitriy Myelnikov, ‘An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922–1955’ (Journal of the History of Medicine and Allied Sciences 73, no. 4, 2018)
Forest Rohwer, Merry Youle, Heather Maughan and Nao Hisakawa, Life in our Phage World: A Centennial Field Guide to Earth’s most Diverse Inhabitants (Wholon, 2014)
Steffanie Strathdee and Thomas Patterson (2019) The Perfect Predator: A Scientist’s Race to Save Her Husband from a Deadly Superbug: A Memoir (Hachette Books, 2020)
William C. Summers, Félix d`Herelle and the Origins of Molecular Biology (Yale University Press, 1999)
William C. Summers, The American Phage Group: Founders of Molecular Biology (University Press, 2023)
Previous Episode

Mercury
Melvyn Bragg and guests discuss the planet which is closest to our Sun. We see it as an evening or a morning star, close to where the Sun has just set or is about to rise, and observations of Mercury helped Copernicus understand that Earth and the other planets orbit the Sun, so displacing Earth from the centre of our system. In the 20th century, further observations of Mercury helped Einstein prove his general theory of relativity. For the last 50 years we have been sending missions there to reveal something of Mercury's secrets and how those relate to the wider universe, and he latest, BepiColombo, is out there in space now.
With
Emma Bunce Professor of Planetary Plasma Physics and Director of the Institute for Space at the University of Leicester
David Rothery Professor of Planetary Geosciences at the Open University
And
Carolin Crawford Emeritus Fellow of Emmanuel College, University of Cambridge, and Emeritus Member of the Institute of Astronomy, Cambridge
Producer: Simon Tillotson In Our Time is a BBC Studios Audio production
Reading list:
Emma Bunce, ‘All (X-ray) eyes on Mercury’ (Astronomy & Geophysics, Volume 64, Issue 4, August 2023)
Emma Bunce et al, ‘The BepiColombo Mercury Imaging X-Ray Spectrometer: Science Goals, Instrument Performance and Operations’ (Space Science Reviews: SpringerLink, volume 216, article number 126, Nov 2020)
David A. Rothery, Planet Mercury: From Pale Pink Dot to Dynamic World (Springer, 2014)
Next Episode

Wormholes
Melvyn Bragg and guests discuss the tantalising idea that there are shortcuts between distant galaxies, somewhere out there in the universe. The idea emerged in the context of Einstein's theories and the challenge has been not so much to prove their unlikely existence as to show why they ought to be impossible. The universe would have to folded back on itself in places, and there would have to be something to make the wormholes and then to keep them open. But is there anywhere in the vast universe like that? Could there be holes that we or more advanced civilisations might travel through, from one galaxy to another and, if not, why not?
With
Toby Wiseman Professor of Theoretical Physics at Imperial College London
Katy Clough Senior Lecturer in Mathematics at Queen Mary, University of London
And
Andrew Pontzen Professor of Cosmology at Durham University
Producer: Simon Tillotson
Reading list:
Jim Al-Khalili, Black Holes, Wormholes and Time Machines (Taylor & Francis, 1999)
Andrew Pontzen, The Universe in a Box: Simulations and the Quest to Code the Cosmos (Riverhead Books, 2023)
Claudia de Rham, The Beauty of Falling: A Life in Pursuit of Gravity (Princeton University Press, 2024)
Carl Sagan, Contact (Simon and Schuster, 1985)
Kip Thorne, Black Holes & Time Warps: Einstein's Outrageous Legacy (W. W. Norton & Company, 1994)
Kip Thorne, Science of Interstellar (W. W. Norton & Company, 2014)
Matt Visser, Lorentzian Wormholes: From Einstein to Hawking (American Institute of Physics Melville, NY, 1996)
In Our Time is a BBC Studios Audio Production
If you like this episode you’ll love
Episode Comments
Generate a badge
Get a badge for your website that links back to this episode
<a href="https://goodpods.com/podcasts/in-our-time-science-70855/bacteriophages-65575381"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to bacteriophages on goodpods" style="width: 225px" /> </a>
Copy