Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
Geology Bites - Damian Nance on What Drives the Supercontinent Cycle

Damian Nance on What Drives the Supercontinent Cycle

02/24/24 • 35 min

Geology Bites

Perhaps as many as five times over the course of Earth history, most of the continents gathered together to form a supercontinent. The supercontinents lasted on the order of a hundred million years before breaking apart and dispersing the continents. For decades, we theorized that this cycle of amalgamation and breakup was caused by near-surface tectonic processes such as subduction that swallowed the oceans between the continents and upper mantle convection that triggered the rifting that split the supercontinents apart. As Damian Nance explains in the podcast, newly acquired evidence suggests a very different picture in which the supercontinent cycle is the surface manifestation of a process that involves the entire mantle all the way to the core-mantle boundary.

Damian Nance draws on a wide range of geological evidence to formulate theories about the large-scale dynamics of the lithosphere and mantle spanning a period going back to the Archean. A major focus of his research is the supercontinent cycle. He is Distinguished Professor Emeritus of Geological Sciences at Ohio University.

plus icon
bookmark

Perhaps as many as five times over the course of Earth history, most of the continents gathered together to form a supercontinent. The supercontinents lasted on the order of a hundred million years before breaking apart and dispersing the continents. For decades, we theorized that this cycle of amalgamation and breakup was caused by near-surface tectonic processes such as subduction that swallowed the oceans between the continents and upper mantle convection that triggered the rifting that split the supercontinents apart. As Damian Nance explains in the podcast, newly acquired evidence suggests a very different picture in which the supercontinent cycle is the surface manifestation of a process that involves the entire mantle all the way to the core-mantle boundary.

Damian Nance draws on a wide range of geological evidence to formulate theories about the large-scale dynamics of the lithosphere and mantle spanning a period going back to the Archean. A major focus of his research is the supercontinent cycle. He is Distinguished Professor Emeritus of Geological Sciences at Ohio University.

Previous Episode

undefined - David Kohlstedt on Simulating the Mantle in the Lab

David Kohlstedt on Simulating the Mantle in the Lab

The Earth’s tectonic plates float on top of the ductile portion of the Earth’s mantle called the asthenosphere. The properties of the asthenosphere, in particular its viscosity, are thought to play a key role in determining how plates move, subduct, and how melt is produced and accumulates. We would like to know what the viscosity of the the asthenosphere is, and how it depends on temperature, pressure, and the proportion of melt and water it contains. Few mantle rocks ever reach the Earth’s surface, and those that do are altered by weathering. So, as he explains in the podcast, David Kohlstedt and his team have tried to replicate the rock compositions and physical conditions of the mantle in the lab. Using specially-built apparatus, he has been able to determine the viscosity of the asthenosphere to within an order of magnitude, which is an enormous improvement on what was known before. David Kohlstedt is Professor Emeritus at the School of Earth and Environmental Science at the University of Minnesota.

Next Episode

undefined - Richard Ernst on Large Igneous Provinces

Richard Ernst on Large Igneous Provinces

At roughly 15-25-million-year intervals since the Archean, huge volumes of lava have spewed onto the Earth’s surface. These form the large igneous provinces, which are called flood basalts when they occur on continents. As Richard Ernst explains in the podcast, the eruption of a large igneous province can initiate the rifting of continents, disrupt the environment enough to cause a mass extinction, and promote mineralization that produces valuable mineral resources.

Richard Ernst studies the huge volcanic events called Large Igneous Provinces (LIPs) — their structure, distribution, and origin as well as their connection with mineral, metal, and hydrocarbon resources; supercontinent breakup; and mass extinctions. He has also been studying LIP planetary analogues, especially on Venus and Mars. He has written the definitive textbook on the subject.

Ernst is Scientist in Residence in the Department of Earth Sciences, Carleton University, Ottawa, Canada, and Professor in the Faculty of Geology and Geography at Tomsk State University, Tomsk, Russia.

Episode Comments

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/geology-bites-398059/damian-nance-on-what-drives-the-supercontinent-cycle-45434104"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to damian nance on what drives the supercontinent cycle on goodpods" style="width: 225px" /> </a>

Copy