Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
Cisco Hands On Training Podcast - IPv6 Static Routing

IPv6 Static Routing

03/14/10 • -1 min

Cisco Hands On Training Podcast
In this hands-on exercise, we configure IPv6 addresses on 3 routers in a triangle. Then we configure IPv6 static routes to allow the 6 IPv6 subnets (3 loopback, 3 P2P links) to be accessible on all 3 routers.
Static routes are easy to understand. At first glance they appear simple. You just manually configure which next-hop to go to for each subnet destination. But in actual use they are very complex. In our example with 3 routers and 6 subnets, we end up using 12 static route commands to implement our routing. Even then we do not achieve full redundancy, because static routes do not reroute around network failures. Even a small production network with approximately 20 routers would have too many static route commands necessary to make a static-route implementation feasible. In the real world, using dynamic routing protocols to minimize manual configurations (minimizing both effort and errors) is necessary to achieve a robust environment.
That said, static routes are sometimes useful at the edge of your network. You redistribute static routes into your routing protocol at the edge of your network where you don't want to dynamically route with routers outside your administrative control. The goal there is just to use the static route to inject a route into your routing protocol. Not to use the static route as your primary routing mechanism.
plus icon
bookmark
In this hands-on exercise, we configure IPv6 addresses on 3 routers in a triangle. Then we configure IPv6 static routes to allow the 6 IPv6 subnets (3 loopback, 3 P2P links) to be accessible on all 3 routers.
Static routes are easy to understand. At first glance they appear simple. You just manually configure which next-hop to go to for each subnet destination. But in actual use they are very complex. In our example with 3 routers and 6 subnets, we end up using 12 static route commands to implement our routing. Even then we do not achieve full redundancy, because static routes do not reroute around network failures. Even a small production network with approximately 20 routers would have too many static route commands necessary to make a static-route implementation feasible. In the real world, using dynamic routing protocols to minimize manual configurations (minimizing both effort and errors) is necessary to achieve a robust environment.
That said, static routes are sometimes useful at the edge of your network. You redistribute static routes into your routing protocol at the edge of your network where you don't want to dynamically route with routers outside your administrative control. The goal there is just to use the static route to inject a route into your routing protocol. Not to use the static route as your primary routing mechanism.

Previous Episode

undefined - The need for QOS versus Net Neutrality

The need for QOS versus Net Neutrality

In 2003, I made a VOIP call from home while downloading a large email attachment. The DSL line saturated and my audio quality became horrible while VOIP packets (and email packets) were being dropped. Doubling the bandwidth to my home would not have solved this problem. The email download would simply have been faster, but the VOIP call would still have suffered packet loss.

The solution to this problem is 'quality of service' (QOS). Some applications, particularly realtime interactive applications, are sensitive to packet loss. Other applications, particularly bulk data traffic (including email, ftp, backups, software update downloads) are not time sensitive and can have their traffic delayed in favor of the realtime traffic. QOS is the network function where certain applications and traffic are prioritized over others that are deemed less urgent.
The creators of the Internet Protocol version 4 understood that quality of service was a requirement. They included the 'type of service' field in the IPv4 header when it was specified in 1981. When developing IPv6, they cleaned up unnecessary header fields, but still they kept the 'class of service' field in the base IPv6 header. Every Internet Protocol packet sent on the Internet since 1983 (when IPv4 went live) included this service field in the header to enable QOS functionality.
In September 2009, Julius Genachowski, chairman of the FCC commissioners, proposed two new 'network neutrality' principles. Among them was the "principle of nondiscrimination." This proposed principle states 'broadband providers cannot discriminate against particular Internet content or applications.' While there is a valid concern that ISP's may choose to impede applications or content from competitors, the current proposal as stated seems to restrict ISP's from using QOS to prioritize traffic for realtime applications, and deprioritize traffic for bulk data applications.
Due to the apparent attempt to ignore a fundamental building block of the Internet, I oppose the proposed 'principle of nondiscrimination' as written. ISP's need to prioritize realtime applications, while deprioritizing non-realtime bulk-data-transfer applications. In addition, ISP's need the freedom to block applications which do not 'play nicely' in a bandwidth constrained environment. Network engineers know that sometimes particular applications need to be blocked to allow the majority of the network (and the majority of customers) to enjoy adequate performance.

Next Episode

undefined - IPv6 RIPng dynamic routing

IPv6 RIPng dynamic routing

The linked video demonstrates RIPng, our first dynamic routing protocol for IPv6. This is a simple but inefficient routing protocol. The metric is based on number of router hops, with no provision for differentiating between links with drastically different bandwidth (a frame-relay hop has the same cost as a 10-gig-ethernet in RIPng). Each router multicasts its entire routing protocol out each interface every 30 seconds, which wastes router CPU. RIPng routinely takes minutes to reroute around network failures.

RIPng does have the refinements added in RIPv2. For example, it multicasts its route updates. It is also capable of including tags in the route updates.
The big advantage of RIPng is that it is simple to understand. But in production that is not good enough. RIPng is a perfect protocol for a computer science student to implement as a class project due to its simplicity, but having the PBX unreachable for 3-5 minutes while routing reconverges is unacceptable in a business environment.

Episode Comments

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/cisco-hands-on-training-podcast-23073/ipv6-static-routing-813940"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to ipv6 static routing on goodpods" style="width: 225px" /> </a>

Copy