Log in

goodpods headphones icon

To access all our features

Open the Goodpods app
Close icon
Circulation: Arrhythmia and Electrophysiology On the Beat - Circulation: Arrhythmia and Electrophysiology On the Beat February 2018

Circulation: Arrhythmia and Electrophysiology On the Beat February 2018

Circulation: Arrhythmia and Electrophysiology On the Beat

02/20/18 • 54 min

plus icon
bookmark
Share icon

Dr Wong: Welcome to the monthly podcast, "On The Beat, for Circulation: Arrhythmia, and Electrophysiology." I'm doctor Paul Wong, editor in chief, with some of the key highlights from this month's issue. We'll also here from Dr. Suraj Kapa reporting on new research from the latest journal articles in the field.

In our first article, Mathew Daly and associates examine whether a high-resolution, 9 French, infrared thermography catheter can continuously image esophageal temperatures during atrial fibrillation catheter ablation. The infrared temperature catheter was inserted nasally or orally into the esophagus, adjacent to the left atrium. Endoscopy was performed within 24 hours to document esophageal injury. Thermal imaging showed that 10 out of 16 patients experienced one or more events where the peak esophageal temperature was greater than 40 degrees centigrade. Three patients experienced temperatures greater than 50 degrees centigrade and one experienced greater than 60 degrees centigrade. Analysis of temperature data from each subject's maximal thermal event revealed high radius, 2.3 degrees centigrade per millimeter and rates of change 1.5 degrees centigrade per second, with an average length of esophageal involvement of 11.0 millimeters.

Endoscopy identified three distinct thermal lesions, all in patients with temperatures greater than 50 degrees centigrade, all resolving within two weeks. The authors concluded that infrared thermography, high-resolution mapping of esophageal temperatures during catheter ablation may be performed. Esophageal thermal injury occurs with temperatures greater than 50 degrees centigrade, and was associated with large spacial-temporal gradients.

In our next article, Nitesh Sood and associates reported on the real-world incidence and predictors of perioperative complications in transvenous lead extractions involving ICD leads in the NCDR ICD registry. Lead extraction was defined as removal of leads implanted for greater than one year. Predictors of major perioperative complication for all extraction procedures, 11,304, and for high voltage leads, 8,362, or 74% across 762 centers were analyzed, using univariate and multivariate logistic regression. Major complications occurred in 258, or 2.3% of the extraction procedures. Of these, 258 procedures with a complication, 41 or 16% required urgent cardiac surgery. Of these, 14 or 34% died during surgery. Among the total 98, or 0.9% deaths reported, 18 or 0.16% of the total occurred during extraction.

In multivariate, logistic regression analysis of all extractions, female sex, admission other than electively for the procedure, three or more leads extracted, longer implant duration, dislodgement of other leads, patients' clinical status, requiring lead extraction, such as infection or perforation, were associated with increased risk of complications. For high voltage leads, smaller lead diameter, a flat versus round coil shape, in greater proximal surface coil area, were multivariate predictors of major perioperative complications.

The rate of major complications and mortality with transvenous lead extraction is similar in the real world compared to single center studies from high volume centers. There remains a significant risk of urgent cardiac surgery with a very high mortality, and planning for appropriate cardiothoracic surgical backup is imperative.

In our next paper, Bence Hegyi and associates, have reported on the repolarization reserve in failing rabbit ventricular myocytes, and the role of calcium and beta-adrenergic effects on delayed and inward rectifier potassium currents. The authors measured the major potassium currents, IKr, IKs, IK1, and their calcium and beta-adrenergic dependence in rabbit ventricular myocytes, in chronic pressure, in volume overload, induced heart failure, and compared them to age-matched controls.

The authors made a number of observations. One, action potential duration was significantly prolonged only at lower pacing rates, 0.2 to 1 Hertz, in heart failure under physiological ionic conditions and temperature. Two, beat to beat variability of action potential duration was also significantly increased in heart failure. Three, both IKr and IKs were significantly regulated in heart failure under action potential clamp but only when cytosolic calcium was not buffered. Four, CaMKII inhibition abolished IKs upregulation in heart failure, but did not affect IKr. Five, IKs response to beta-adrenergic stimulation was also significantly diminished in heart failure, and, six, IK1 was also decreased in heart failure regardless of calcium buffering, CaMKII inhibition or beta-adrenergic stimulation.

These observations changed when cytosolic calcium was buffered. The action potential prolongation in heart failure was also significant in higher pacing rates. The authors concluded that in heart failure, calcium dependent up regulation of IKr ...

02/20/18 • 54 min

plus icon
bookmark
Share icon

Generate a badge

Get a badge for your website that links back to this episode

Select type & size
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/circulation-arrhythmia-and-electrophysiology-on-the-beat-94401/circulation-arrhythmia-and-electrophysiology-on-the-beat-february-2018-5066106"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to circulation: arrhythmia and electrophysiology on the beat february 2018 on goodpods" style="width: 225px" /> </a>

Copy