
Sternengeschichten Folge 586: Das Lokale Loch
02/16/24 • 10 min
Sternengeschichten Folge 586: Das Lokale Loch
Wir leben in einem Loch. Gut, das ist missverständlich. Wir leben natürlich auf der Erde und nicht in einem Loch. Aber wenn man sich das Universum auf einem ganz großen Maßstab ansieht, dann leben wir einem Loch. Und um zu verstehen, was das genau bedeutet, muss man natürlich ein bisschen mehr erklären.
Ich habe in den Sternengeschichten schon oft von der großräumigen Struktur des Universums erzählt. Und "groß" meint hier wirklich groß. Es geht nicht um Galaxien, nichtmal um Galaxienhaufen. Es geht um galaktische Superhaufen, also Ansammlungen von Galaxienhaufen, die selbst wieder aus zehn- bis hunderttausenden Galaxien bestehen können. Diese Haufen, aus Haufen bilden noch größere Strukturen und zwischen den Strukturen ist nichts. Wenn man das gesamte Universum von außen betrachten würde, sich eine Region aussucht, die ein paar Milliarden Lichtjahre im Durchmesser hat und dann die Menge an Materie in dieser Region bestimmt, würde man einen gewissen Wert kriegen. Wenn ich mir eine andere Region mit ein paar Milliarden Lichtjahren Durchmesser nehme und die gleichen Messungen dort mache, werde ich fast den selben Wert kriegen.
Das bedeutet, dass unser Universum homogen ist: Es gibt keine Ecke, wo sich die ganze Materie drängt und eine andere, wo alles komplett leer ist. Aber das gilt eben nur für die ganze großen Skalen. Wenn man den Fokus ein wenig enger fasst, dann findet man sehr wohl Bereiche im Universum wo mehr Materie ist und Bereiche mit weniger. Und wir leben in einer der Gegenden, wo weniger ist als anderswo.
Wir wissen schon länger, dass es Filamente und Voids gibt, also die größten Strukturen aus Galaxien-Superhaufen und die gigantischen Leerräume dazwischen; ich habe in Folge 63 mal darüber gesprochen. Aber wenn man deren Verteilung sehr genau misst, dann sieht man, dass es Bereiche gibt, in denen unterdurchschnittlich viel Materie ist. Und als Ryan Keenan von der Uni Taiwan, Amy Barger und Lenox Cowie von der Uni Hawaii im Jahr 2013 so eine Untersuchung angestellt haben, haben sie herausgefunden, dass die lokale Galaxienverteilung ein wenig dünn ist. Oder besser gesagt: Sie haben festgestellt, dass wir uns mitten in einer großen Leere befinden.
Gut, "Leere" mag übertrieben klingen. Immerhin ist die Milchstraße Teil dieser Leere und die ist ja nicht nichts. Und nicht nur die Milchstraße: Die gesamte Lokale Gruppe sitzt in dieser Leere, also die Galaxiengruppe, zu der neben der Milchstraße und der Andromedagalaxie auch noch über 100 andere Galaxien gehören. Außerdem ist auch der Laniakea-Superhaufen mit dabei in der Leere, der immerhin aus gut 100.000 Galaxien besteht; inklusive des Virgo-Superhaufens der die Lokale Gruppe mit der Milchstraße enthält.
Man kann also nicht sagen, dass in dieser Leere nichts ist. Unser ganzes lokales Universum ist in dieser Leere, aber wenn man unser lokales Universum mit dem vergleicht, was anderswo zu finden ist, dann gibt es bei uns weniger. Die Milchstraße sitzt fast in der Mitte dieser unterdurchschnittlich bestückten Region die einen Durchmesser von circa einer Milliarde Lichtjahren hat. Und die übrigens wahlweise als "Local Hole", als das "Lokale Loch" bezeichnet wird oder als KBC-Void, oder KBC-Leere, nach den Anfangsbuchstaben der Nachnamen von Keenan, Barger und Cowie.
Ok, jetzt kann man sich fragen, was das bedeuten soll. Dann gibt es halt im Universum Bereiche mit mehr Zeug und Bereiche mit weniger Zeug. Und wir sind halt zufällig gerade da, wo weniger ist. Es mag fürs Selbstbewusstsein der menschlichen Spezies vielleicht ein Rückschlag sein, dass wir in nem kosmischen Loch wohnen und nicht da, wo die Post abgeht. Aber wenn es so, ist dann ist es halt so. Und das mag alles so sein - aber die Tatsache, dass wir im lokalen Loch leben, hat durchaus Konsequenzen. Keine natürlich, die unseren Alltag betreffen. Da ist das wirklich komplett egal. Wenn unser Alltag aber daraus bestehen sollte, das Universum zu verstehen, ist die Sache mit dem Lokalen Loch wirklich wichtig.
Wir wissen, dass das Universum expandiert. Darüber habe ich ja schon oft genug geredet. Wir können auch messen, wie schnell es das tut. Wir wissen, dass es in der Vergangenheit langsamer expandiert hat als in der Gegenwart; dieses Phänomen nennen wir die "Dunkle Energie". Aber darum soll es heute nicht gehen. Wir wollen nur wissen, wie schnell das Universum jetzt expandiert und mit "jetzt" ist alles plus minus ein paar hundert Millionen Jahre gemeint. Diese Expansionsrate wird mit dem "Hubble-Parameter" beschrieben und man kann ihn auf unterschiedliche Weise messen. Man kann direkt die Geschwindigkeit und die Entfernung von fernen Galaxien beobachten und daraus die Expansionsrate berechnen. Man kann aber auch indirekt die Entwicklung des Universums beobachten und aus seinem früheren Zustand berechnen, wie es in der Gegenwart aussehen muss. Der e...
Sternengeschichten Folge 586: Das Lokale Loch
Wir leben in einem Loch. Gut, das ist missverständlich. Wir leben natürlich auf der Erde und nicht in einem Loch. Aber wenn man sich das Universum auf einem ganz großen Maßstab ansieht, dann leben wir einem Loch. Und um zu verstehen, was das genau bedeutet, muss man natürlich ein bisschen mehr erklären.
Ich habe in den Sternengeschichten schon oft von der großräumigen Struktur des Universums erzählt. Und "groß" meint hier wirklich groß. Es geht nicht um Galaxien, nichtmal um Galaxienhaufen. Es geht um galaktische Superhaufen, also Ansammlungen von Galaxienhaufen, die selbst wieder aus zehn- bis hunderttausenden Galaxien bestehen können. Diese Haufen, aus Haufen bilden noch größere Strukturen und zwischen den Strukturen ist nichts. Wenn man das gesamte Universum von außen betrachten würde, sich eine Region aussucht, die ein paar Milliarden Lichtjahre im Durchmesser hat und dann die Menge an Materie in dieser Region bestimmt, würde man einen gewissen Wert kriegen. Wenn ich mir eine andere Region mit ein paar Milliarden Lichtjahren Durchmesser nehme und die gleichen Messungen dort mache, werde ich fast den selben Wert kriegen.
Das bedeutet, dass unser Universum homogen ist: Es gibt keine Ecke, wo sich die ganze Materie drängt und eine andere, wo alles komplett leer ist. Aber das gilt eben nur für die ganze großen Skalen. Wenn man den Fokus ein wenig enger fasst, dann findet man sehr wohl Bereiche im Universum wo mehr Materie ist und Bereiche mit weniger. Und wir leben in einer der Gegenden, wo weniger ist als anderswo.
Wir wissen schon länger, dass es Filamente und Voids gibt, also die größten Strukturen aus Galaxien-Superhaufen und die gigantischen Leerräume dazwischen; ich habe in Folge 63 mal darüber gesprochen. Aber wenn man deren Verteilung sehr genau misst, dann sieht man, dass es Bereiche gibt, in denen unterdurchschnittlich viel Materie ist. Und als Ryan Keenan von der Uni Taiwan, Amy Barger und Lenox Cowie von der Uni Hawaii im Jahr 2013 so eine Untersuchung angestellt haben, haben sie herausgefunden, dass die lokale Galaxienverteilung ein wenig dünn ist. Oder besser gesagt: Sie haben festgestellt, dass wir uns mitten in einer großen Leere befinden.
Gut, "Leere" mag übertrieben klingen. Immerhin ist die Milchstraße Teil dieser Leere und die ist ja nicht nichts. Und nicht nur die Milchstraße: Die gesamte Lokale Gruppe sitzt in dieser Leere, also die Galaxiengruppe, zu der neben der Milchstraße und der Andromedagalaxie auch noch über 100 andere Galaxien gehören. Außerdem ist auch der Laniakea-Superhaufen mit dabei in der Leere, der immerhin aus gut 100.000 Galaxien besteht; inklusive des Virgo-Superhaufens der die Lokale Gruppe mit der Milchstraße enthält.
Man kann also nicht sagen, dass in dieser Leere nichts ist. Unser ganzes lokales Universum ist in dieser Leere, aber wenn man unser lokales Universum mit dem vergleicht, was anderswo zu finden ist, dann gibt es bei uns weniger. Die Milchstraße sitzt fast in der Mitte dieser unterdurchschnittlich bestückten Region die einen Durchmesser von circa einer Milliarde Lichtjahren hat. Und die übrigens wahlweise als "Local Hole", als das "Lokale Loch" bezeichnet wird oder als KBC-Void, oder KBC-Leere, nach den Anfangsbuchstaben der Nachnamen von Keenan, Barger und Cowie.
Ok, jetzt kann man sich fragen, was das bedeuten soll. Dann gibt es halt im Universum Bereiche mit mehr Zeug und Bereiche mit weniger Zeug. Und wir sind halt zufällig gerade da, wo weniger ist. Es mag fürs Selbstbewusstsein der menschlichen Spezies vielleicht ein Rückschlag sein, dass wir in nem kosmischen Loch wohnen und nicht da, wo die Post abgeht. Aber wenn es so, ist dann ist es halt so. Und das mag alles so sein - aber die Tatsache, dass wir im lokalen Loch leben, hat durchaus Konsequenzen. Keine natürlich, die unseren Alltag betreffen. Da ist das wirklich komplett egal. Wenn unser Alltag aber daraus bestehen sollte, das Universum zu verstehen, ist die Sache mit dem Lokalen Loch wirklich wichtig.
Wir wissen, dass das Universum expandiert. Darüber habe ich ja schon oft genug geredet. Wir können auch messen, wie schnell es das tut. Wir wissen, dass es in der Vergangenheit langsamer expandiert hat als in der Gegenwart; dieses Phänomen nennen wir die "Dunkle Energie". Aber darum soll es heute nicht gehen. Wir wollen nur wissen, wie schnell das Universum jetzt expandiert und mit "jetzt" ist alles plus minus ein paar hundert Millionen Jahre gemeint. Diese Expansionsrate wird mit dem "Hubble-Parameter" beschrieben und man kann ihn auf unterschiedliche Weise messen. Man kann direkt die Geschwindigkeit und die Entfernung von fernen Galaxien beobachten und daraus die Expansionsrate berechnen. Man kann aber auch indirekt die Entwicklung des Universums beobachten und aus seinem früheren Zustand berechnen, wie es in der Gegenwart aussehen muss. Der e...
Vorherige Episode

Sternengeschichten Folge 585: Das Sternbild Drache
Ein Monster voll mit Astronomie
Sternengeschichten Folge 585: Das Sternbild Drache
Es wird wieder mal Zeit, dass wir uns eines der Sternbilder ansehen. Und der Drache ist ein ganz besonderes Sternbild. Ok - jedes Sternbild ist besonders, denn wie ich ja schon oft erklärt habe, sind die modernen Sternbilder ja einfach nur abgegrenzte Bereiche am Himmel. 88 Stück davon gibt es und es gibt keine Stelle am Himmel, wo man nicht irgendwas besonders finden könnte. Aber der Drache ist nicht nur ein altes Sternbild mit jeder Menge spannender Mythologie sondern auch ein Sternbild, in dem man aus so gut wie jedem Bereich der Astronomie etwas findet.
Aber fangen wir mal damit an, wo der Drache ist. Man findet ihn im Norden; er windet sich quasi um den kleinen Bären herum, zu dem ja auch Polaris gehört, der Polarstern, der den Himmelsnordpol markiert. In Mitteleuropa kann man den Drachen deswegen auch das ganze Jahr über in jeder Nacht sehen und weil er vergleichsweise viele helle Sterne enthält, ist er auch leicht zu erkennen. Sucht euch einfach den Polarstern und schaut nach einer langen Kette aus Sternen, die sich in seiner Nähe über den Himmel windet. Das ist der Drache und dieses Sternbild war schon in der Antike bekannt. Es war eines der 48 Sternbilder, die Ptolemäus vor knapp 2000 Jahren in seinen astronomischen Werken aufgelistet hat, aber die Menschen haben dort auch schon früher alle möglichen Monster gesehen. In der Schöpfungsgeschichte der Babylonier hat man sich dort oben Tiamat vorgestellt; die Göttin des Salzwassers die als eine Art Seeschlange mit Hörnern dargestellt wird. Sie kämpft gegen Marduk, die Hauptgottheit der Babylonier, der Tiamat besiegt, ihren Körper zerteilt und aus den beiden Hälften Himmel und Erde erschafft. In der griechischen Mythologie gibt es auch jede Menge drachenähnliche Monster, zum Beispiel Ladon, der gleich 100 Köpfe hat und die goldenen Äpfel der Hesperiden bewacht, die Untersterblichkeit verleihen. Hat er auch immer super geschafft, bis Herkules gekommen ist und ihn umgebracht hat. In den Mythen der arabischen Nomaden hat man hier allerdings ein Kamel gesehen, dass sein Junges beschützt, das gerade von zwei Hyaenen angegriffen wird.
Aber schauen wir uns jetzt lieber an, was es im Drachen zu sehen gibt. Wenn wir das Anfang Oktober tun und wir eine gute, dunkle Nacht erwischen, werden wir vielleicht mit jeder Menge Draconiden belohnt. So nennt sich ein Meteorstrom, also ein "Sternschnuppenschauer", der jedes Jahr um den 9. Oktober herum sichtbar ist. Dann bewegt sich die Erde durch den Staub, den der Komet 21P/Giacobini-Zinner im All hinterlassen hat und wir können sehen, wie jede Menge Sternschnuppen über den Himmel sausen. Wenn wir Glück haben, jedenfalls. Üblicherweise sind die Draconiden eher schwach, mit höchstens einer Handvoll an Sternschnuppen pro Stunde. Aber alle paar Jahrzehnte kann es richtig viel werden, wenn nämlich der Komet gerade vorher vorbei gekommen ist und frischen Staub hinterlassen hat. Das war zum Beispiel 1985, 1998 und 2011 der Fall, da konnte man ein paar hundert Sternschnuppen pro Stunde sehen. Wegen der Richtung, in die sich die Erde Anfang Oktober bewegt, scheinen die Sternschnuppen alle aus Richtung des Sternbilds Drache zu kommen und daher haben sie auch ihren Namen.
Der hellste Stern eines Sternbilds wird üblicherweise mit dem griechischen Buchstaben Alpha bezeichnet, gefolgt von der lateinischen Bezeichnung des Sternbilds. Alpha Draconis ist aber nur der achthellste Stern im Drachen - aber trotzdem einer der wichtigsten. Auf jeden Fall war er das für die Menschen die vor knapp 5000 Jahren gelebt haben. Da war Alpha Draconis nämlich der Polarstern. Oder besser gesagt: Der Polarstern war damals natürlich auch schon der Polarstern, aber er war nicht dort, wo sich der Himmelsnordpol befindet. Da befand sich zu der Zeit eben Alpha Draconis. Die Achse, um die die Erde sich dreht und die in Richtung Himmelsnordpol zeigt, beschreibt im Verlauf von gut 26.000 Jahren einen kleinen Kreis am Himmel. Heute zeigt sie ungefähr dorthin, wo sich Polaris befindet. Damals war sie aber auf Alpha Draconis ausgerichtet. Und um das Jahr 20.000 herum wird sie das wieder tun.
Der tatsächlich hellste Stern im Drachen ist Gamma Draconis beziehungsweise "Etamin" wie er auch genannt wird. Das bedeutet "Schlange" und Etamin ist nicht nur hell, sondern hat in der Geschichte der Astronomie auch eine wichtige Rolle gespielt. Ich habe davon schon in Folge 83 erzählt: Mit dem 16. Jahrhundert setzte sich langsam die Idee durch, dass die Erde sich um die Sonne bewegt und nicht umgekehrt. Wenn das so ist, dann müsste sich aber auch die Position der Sterne scheinbar verändern, weil wir sie im Laufe eines Jahres von unterschiedlichen Positionen im Sonnensystem aus beobachten. Sie müssten sich in Bezug auf die noch weiter entfernt liegenden Sternen leicht verschieben. Diesen Effekt, die "Parallaxe" sollte man messen können...
Nächste Episode

Sternengeschichten Folge 587: Das Brummen der Erde
Alles schwingt, aber nicht esoterisch
Sternengeschichten Folge 587: Das Brummen der Erde
Die Erde brummt. Das können wir nicht hören, aber sie tut es trotzdem. Und deswegen schauen wir uns heute das Erdbrummen, wie es umgangssprachlich genannt wird beziehungsweise die Eigenschwingungen der Erde, wie man es wissenschaftlich korrekt nennt, etwas genauer an. Über ein ähnliches Phänomen habe ich schon in Folge 164 gesprochen, als es um Asteroseismologie ging. Aber, wie der Name schon sagt, waren es damals schwingende Sterne, von denen ich erzählt habe. Schwingen tut aber auch die Erde und bevor wir uns das genauer anschauen, müssen wir erst einmal klären, was damit gemeint ist.
Stellen wir uns eine Kugel aus Metall vor und einen Hammer, mit dem wir auf diese Kugel schlagen. Was passiert ist klar: Es wird "Klong!" machen. Der Hammer hat die Kugel zum Vibrieren gebracht und dadurch wird auch die Luft in Vibration versetzt und wenn die dann auf unsere Ohren trifft, hören wir ein Geräusch. Oder stellen wir uns einen Wackelpudding vor, auf den wir mit einem Löffel schlagen. Auch dann wird der Pudding, ganz seinem Namen gerecht, hin und her wackeln. Ein Geräusch gibt es dabei nicht, oder besser gesagt: Es gibt kein Geräusch, das wir hören können, denn das Wackeln des Puddings ist zu langsam, als dass es ein für unsere Ohren hörbares Geräusch erzeugt.
Aber es geht ja heute um die Erde. Die ist weder eine Kugel aus Metall und auch nicht aus Pudding. Und es haut auch niemand mit einem riesigen Hammer oder einem großen Löffel auf sie ein. Aber sie schwingt trotzdem. Das merken wir zum Beispiel sehr deutlich, wenn ein Erdbeben stattfindet. Dann breiten sich Erdbebenwellen durch den Planeten aus und das ist ja nichts anderes als eine Schwingung im Gestein der Erde. Aber irgendwann ist so ein Erdbeben vorbei und die Wellen haben sich wieder beruhigt. Die Eigenschwingungen der Erde um die es heute geht, haben mit den Erdbeben allerdings erstmal nicht viel zu tun. Selbst wenn es einmal auf der ganzen Erde keine Erdbeben gibt, keine Vulkanausbrüche, und so weiter, schwingt der Planet trotzdem ein kleines bisschen. Und damit ist wirklich ein kleines bisschen gemeint. Es geht um Bewegungen von ein paar Zehntausendestel Millimeter, die periodisch alle paar Minuten stattfinden. Das Geräusch das dabei entsteht ist erstens enorm schwach und zweitens weit tiefer als das, was unsere Ohren hören könnten.
Aber es gibt diese Bewegung. Es gibt sogar zwei Arten von Bewegungen beziehungsweise zwei grundlegend unterschiedliche Weisen, wie die Erde schwingen kann. Die erste nennt man "sphäroidale Schwingungen" und das klingt kompliziert. Das kann auch sehr kompliziert werden, aber im Grunde ist es ganz einfach. Wenn die Erde zum Beispiel einfach nur pulsiert, ist das eine sphäroidale Schwingung. "Pulsieren" heißt in diesem Fall, dass die Erde größer wird, kleiner wird, größer wird, kleiner wird, und so weiter. Wie gesagt, es geht hier um winzigste Änderungen, aber das Prinzip bleibt gleich. Dieses Pulsieren ist die einfachste Schwingung die die Erde durchführen kann, aber es geht auch komplexer. Sie kann zum Beispiel abwechselnd in unterschiedliche Richtungen schwingen. Stellen wir uns vor, wir würden die Erde zusammendrücken, sie quasi mit den Fingern an Nord- und Südpol fassen und dann ein bisschen quetschen. Dann lassen wir los, packen sie am Äquator und ziehen sie auseinander. Dann wird wieder an den Polen gedrückt, und so weiter. Die ganze Schwingerei kann noch viel komplexer werden, aber das ist das Prinzip der sphäroidalen Schwingung.
Es gibt aber auch noch toroidale Schwingungen. Hier können wir uns vorstellen, dass wir probieren, die Erde aufzuschrauben. Wir drehen also die Nordhalbkugel in die eine Richtung und die Südhalbkugel in die andere Richtung. Wenn wir dann loslassen, dreht sich die verdrillte Erde wieder zurück und hin und her, auf unterschiedlichen Hemisphären in unterschiedliche Richtungen. Wenn man es ganz stark und vermutlich zu stark vereinfachen möchte, dann sind sphäroidale Schwingungen welche, bei denen sich der Erdboden auf und ab bewegt und toroidale Schwingungen welche, bei denen sich der Erdboden horizontal hin und her bewegt.
Dass es so etwas geben kann, ist vorerst keine große Überraschung. Alles schwingt, wenn man es entsprechenden Kräften aussetzt. Bei der Sonne zum Beispiel haben wir diese Schwingungen schon in den 1960er Jahren beobachtet. Aber im Gegensatz zu unserem Stern ist die Erde keine Gaskugel sondern besteht aus fester Materie und hier wirken auch nicht die enormen Kräfte, die das Innere der Sonne beherrschen. Und außerdem gibt es andauernd Erdbeben, Vulkanausbrüche und so weiter, die die winzigen Eigenschwingungen unseres Planeten überlagern. Es ist lange Zeit fast unmöglich erschienen, das Erdbrummen zu messen und es hat tatsächlich bis 1998 gedauert, bis es das erste Mal gelungen ist. Kazunari Nawa und Naoki Suda von der Unive...
Wenn dir diese Episode gefällt, wirst du lieben
Kommentare zur Episode
Badge generieren
Erhalte ein Badge für deine Webseite, das auf diese episode
<a href="https://goodpods.com/podcasts/sternengeschichten-274843/sternengeschichten-folge-586-das-lokale-loch-44947865"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to sternengeschichten folge 586: das lokale loch on goodpods" style="width: 225px" /> </a>
Kopieren