Anmelden

goodpods headphones icon

Um auf alle unsere Funktionen zuzugreifen

Öffne die Goodpods App
Close icon
Irgendwas mit Daten - Datenanalyse in der Industrie - #46 Wie gut funktionieren Machine Learning Modelle

#46 Wie gut funktionieren Machine Learning Modelle

03/23/22 • 25 min

Irgendwas mit Daten - Datenanalyse in der Industrie
Kennzahlen für die Modell-Quaität bei messbaren Zielgrößen (Regression)

Wie gut funktionieren Machine Learning Modelle?

👉 Welche Qualitäts-Kriterien gibt es für Machine Learning?
👉 Wie wird Erklär-Qualität bei der Regression bewertet?
👉 Wann ist die Anpassungsgüte R2 groß genug?

Ein Modell mit Methoden des maschinellen Lernens wie z. B. Regression oder Klassifikation zu bauen ist einfach. Solche Modelle können uns beispielsweise optimale Arbeitspunkte liefern oder dabei helfen nachzuweisen, dass die Anforderungen in einem bestimmten Prozessfenster erfüllt werden.

Bevor ein Modell produktiv genutzt wird, sollten Sie zuerst prüfen, ob das Modell gut genug ist. In dieser Folge erhalten Sie Informationen dazu, welche Kenngrößen für die Modell- bzw. Erklär-Qualität genutzt werden und warum die beliebteste Kennzahl, die Anpassungsgüte R2, allein zu wenig ist. Alternative Kennzahlen wie die Prognosegüte liefern weitere wichtige Erkenntnisse über die Qualität des ML Modells.

Links

👉 Barbara Bredner (2021) "NOT Statistik. Nachweise führen, Optimierungen finden, Toleranzen berechnen mit Minitab und R"
👉 Anber Arif: Cross Validation in Machine Learning
👉 Shervine Amidi: Machine Learning tips and tricks cheatsheet
👉 Adi Bronshtein: Train/Test Split and Cross Validation in Python

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, [email protected]

plus icon
bookmark
Kennzahlen für die Modell-Quaität bei messbaren Zielgrößen (Regression)

Wie gut funktionieren Machine Learning Modelle?

👉 Welche Qualitäts-Kriterien gibt es für Machine Learning?
👉 Wie wird Erklär-Qualität bei der Regression bewertet?
👉 Wann ist die Anpassungsgüte R2 groß genug?

Ein Modell mit Methoden des maschinellen Lernens wie z. B. Regression oder Klassifikation zu bauen ist einfach. Solche Modelle können uns beispielsweise optimale Arbeitspunkte liefern oder dabei helfen nachzuweisen, dass die Anforderungen in einem bestimmten Prozessfenster erfüllt werden.

Bevor ein Modell produktiv genutzt wird, sollten Sie zuerst prüfen, ob das Modell gut genug ist. In dieser Folge erhalten Sie Informationen dazu, welche Kenngrößen für die Modell- bzw. Erklär-Qualität genutzt werden und warum die beliebteste Kennzahl, die Anpassungsgüte R2, allein zu wenig ist. Alternative Kennzahlen wie die Prognosegüte liefern weitere wichtige Erkenntnisse über die Qualität des ML Modells.

Links

👉 Barbara Bredner (2021) "NOT Statistik. Nachweise führen, Optimierungen finden, Toleranzen berechnen mit Minitab und R"
👉 Anber Arif: Cross Validation in Machine Learning
👉 Shervine Amidi: Machine Learning tips and tricks cheatsheet
👉 Adi Bronshtein: Train/Test Split and Cross Validation in Python

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, [email protected]

Vorherige Episode

undefined - #45 Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?

#45 Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?

warum "normal-verteilt" eher nicht normal ist

Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?

👉 Warum ist das Ergebnis nicht normal-verteilt?
👉 Wie funktionieren verallgemeinerte lineare Modelle (GLM: Generalized Linear Models)?
👉 Sind Machine Learning Modelle auch GLMs?

Die Normalverteilung von Messwerten wird für viele Methoden vorausgesetzt und sie scheint oft "das Normalste" von der Welt zu sein - bis echte Messwerte aufgenommen werden. Die sind selten normalverteilt und damit stellt sich schnell die Frage, warum die Messwerte nicht aus einer "normalen" Verteilung kommen.

Mögliche Antworten darauf erhalten Sie in der aktuellen Folge. Außerdem geht es darum, wie Auswertungen bei nicht-normalverteilten Messdaten z. B. mit GLMs funktionieren und wie die verallgemeinerten linearen Modelle mit den Methoden des maschinellen Lernens zusammenhängen.

Links

👉 Hilbe, S. (2010) "Generalized Linear Models", Encyclopedia of Mathematics
👉 Great Learnings Team (2021) "Generalized Linear Model | What does it mean?"
👉 Clark, M. (2019) "Generalized Additive Models"

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, [email protected]

Nächste Episode

undefined - #47 In Ordnung oder nicht in Ordnung, das ist hier die Frage!

#47 In Ordnung oder nicht in Ordnung, das ist hier die Frage!

Kennzahlen für die Modell-Quaität bei attributiven Zielgrößen (Klassifizierung)

In Ordnung oder nicht in Ordnung, das ist hier die Frage!

👉 Wie funktioniert die Bewertung der Erklär-Qualität bei attributiven Zielgrößen (gut/schlecht)?
👉 Was ist die Konfusionsmatrix?
👉 Welche Kennzahlen werden für die Erklär-Qualität bei der Klassifizierung eingesetzt?

Vor der Nutzung von Modellen zum Beispiel für die Optimierung von Versuchs- oder Prozess-Einstellungen sollte immer die Aussagekraft oder Erkär-Qualität bewertet werden. In dieser Folge erfahren Sie, mit welchen Kennzahlen Machine Learning Modelle evaluiert werden, die eine attributive Zielgröße (gut/schlecht, in Ordnung/nicht in Ordnung) haben.

Diese Methoden werden eingesetzt, wenn das Versuchs- oder Prozess-Ergebnis eine Klassifizierung ist. Je treffsicherer das ML Modell vorhersagen kann, in welcher Klasse oder Kategorie das Ergebnis landet, desto besser ist es für den produktiven Einsatz geeignet. In dieser Folge bekommen Sie Informationen und Erklärungen zur Konfusionmatrix und den wichtigsten Kennzahlen zur Bewertung der Erklär-Qualität von Modellen mit attributiven Zielgrößen. Darüber hinaus erfahren Sie, wie die ROC-Kurve entsteht und warum die Fläche unter der Kurve (AUC) für ein gutes Modell deutlich größer als 0,5 sein muss.

Links

👉 Schwangere Männer Bild
👉 In Ordnung oder nicht in Ordnung - Erklär-Qualität bei attributiven Zielgrößen: Konfusionsmatrix, Accuracy, Precision, Recall, Speficity, F1-Score
👉 Visualisierung von ROC und AUC: What is AUC?

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, [email protected]

Kommentare zur Episode

Badge generieren

Erhalte ein Badge für deine Webseite, das auf diese episode

Typ & Größe auswählen
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/irgendwas-mit-daten-datenanalyse-in-der-industrie-531792/46-wie-gut-funktionieren-machine-learning-modelle-68856691"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to #46 wie gut funktionieren machine learning modelle on goodpods" style="width: 225px" /> </a>

Kopieren