Anmelden

goodpods headphones icon

Um auf alle unsere Funktionen zuzugreifen

Öffne die Goodpods App
Close icon
Graduate School of Systemic Neurosciences - Digitale Hochschulschriften der LMU - The representation of space in mammals

The representation of space in mammals

07/30/12 • 0 min

Graduate School of Systemic Neurosciences - Digitale Hochschulschriften der LMU
Animals require cognitive maps for efficiently navigating in their natural habitat. Cognitive maps are a neuronal representation of their outside world. In mammals, place cells and grid cells have been implicated to form the basis of these neuronal representations. Place cells are active at one particular location in an environment and grid cells at multiple locations of the external world that are arranged in a hexagonal lattice.
plus icon
bookmark
Animals require cognitive maps for efficiently navigating in their natural habitat. Cognitive maps are a neuronal representation of their outside world. In mammals, place cells and grid cells have been implicated to form the basis of these neuronal representations. Place cells are active at one particular location in an environment and grid cells at multiple locations of the external world that are arranged in a hexagonal lattice.

Vorherige Episode

undefined - Of memories and ripples

Of memories and ripples

The hippocampus is one of the regions in the mammalian brain that is associated with memory of events in their spatiotemporal context. Sequences of neuronal activity in the hippocampus are the chief candidate for a neurophysiological correlate of such contextual, or episodic memory. Simultaneously to replaying these behaviorally-related activity sequences, the hippocampus engages in a powerful and fast oscillation known as sharp-wave ripples (SWR). Ripples in turn participate in a brain-wide pattern of activity and may orchestrate the local strengthening of memories and their broadcasting to the cortex. In this Thesis, both memory sequences and ripple oscillations are studied in the light of the unifying hypothesis that the coordinated activation of a neuronal assembly represents an individual memory item in the sequences, and is at the same time responsible for the individual cycles in the oscillations. To test the hypothesis, we investigated SWR in vitro and in vivo in the mouse, using intracellular recordings of currents in CA1 pyramidal cells referenced to the local field potential. Expanding current hypotheses on SWR generation, we found powerful, well ripple-locked and spatially pervasive but CA1-local excitatory inputs, indicative of presynaptic assemblies of CA1 principal neurons. Combining a novel peeling reconstruction algorithm for synaptic currents with recordings at different holding potentials, we could for the first time unravel individual synaptic contributions during ripples. Analysis of the strikingly precise timing of currents demonstrated that inhibition aligns its phase to excitation over the course of a ripple. We carried on the dissection of ripples to the theoretical domain by incorporating the effect of inhibition into a mean field model of sequence replay. Using this model, we inquired what are the neuronal assembly size and inhibitory feedback strength that maximize the capacity of a hippocampal network to store memories, so that those memories can be successfully retrieved during ripple episodes. We found that a linearly coupled inhibitory population indeed helps increase storage capacity by dynamically stabilizing replay in an oscillatory manner for lower assembly sizes than in absence of inhibition. The findings about the temporal structure of neuronal activation during ripples complement our experimental observations. Collectively, they offer new insights on the physiology and function of sharp-wave ripples, paving the way for an integrated, continuous-time model of large networks of sparsely connected neurons that replay activity sequences concomitant to transient ensemble oscillations.

Nächste Episode

undefined - Mechanisms of visual salience and memory on reaching and grasping behavior

Mechanisms of visual salience and memory on reaching and grasping behavior

Kommentare zur Episode

Badge generieren

Erhalte ein Badge für deine Webseite, das auf diese episode

Typ & Größe auswählen
Open dropdown icon
share badge image

<a href="https://goodpods.com/podcasts/graduate-school-of-systemic-neurosciences-digitale-hochschulschriften-72332/the-representation-of-space-in-mammals-3846709"> <img src="https://storage.googleapis.com/goodpods-images-bucket/badges/generic-badge-1.svg" alt="listen to the representation of space in mammals on goodpods" style="width: 225px" /> </a>

Kopieren